Properties

Label 185.168
Modulus 185185
Conductor 185185
Order 3636
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(185, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([27,25]))
 
pari: [g,chi] = znchar(Mod(168,185))
 

Basic properties

Modulus: 185185
Conductor: 185185
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3636
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 185.z

χ185(17,)\chi_{185}(17,\cdot) χ185(18,)\chi_{185}(18,\cdot) χ185(22,)\chi_{185}(22,\cdot) χ185(42,)\chi_{185}(42,\cdot) χ185(72,)\chi_{185}(72,\cdot) χ185(87,)\chi_{185}(87,\cdot) χ185(98,)\chi_{185}(98,\cdot) χ185(113,)\chi_{185}(113,\cdot) χ185(143,)\chi_{185}(143,\cdot) χ185(163,)\chi_{185}(163,\cdot) χ185(167,)\chi_{185}(167,\cdot) χ185(168,)\chi_{185}(168,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ36)\Q(\zeta_{36})
Fixed field: 36.36.57444765302724909954814307473256133361395843470561362005770206451416015625.2

Values on generators

(112,76)(112,76)(i,e(2536))(-i,e\left(\frac{25}{36}\right))

First values

aa 1-11122334466778899111112121313
χ185(168,a) \chi_{ 185 }(168, a) 1111e(49)e\left(\frac{4}{9}\right)e(1136)e\left(\frac{11}{36}\right)e(89)e\left(\frac{8}{9}\right)i-ie(3536)e\left(\frac{35}{36}\right)e(13)e\left(\frac{1}{3}\right)e(1118)e\left(\frac{11}{18}\right)e(56)e\left(\frac{5}{6}\right)e(736)e\left(\frac{7}{36}\right)e(89)e\left(\frac{8}{9}\right)
sage: chi.jacobi_sum(n)
 
χ185(168,a)   \chi_{ 185 }(168,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ185(168,))   \tau_{ a }( \chi_{ 185 }(168,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ185(168,),χ185(n,))   J(\chi_{ 185 }(168,·),\chi_{ 185 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ185(168,))  K(a,b,\chi_{ 185 }(168,·)) \; at   a,b=\; a,b = e.g. 1,2