from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(185, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([27,25]))
pari: [g,chi] = znchar(Mod(168,185))
Basic properties
Modulus: | \(185\) | |
Conductor: | \(185\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 185.z
\(\chi_{185}(17,\cdot)\) \(\chi_{185}(18,\cdot)\) \(\chi_{185}(22,\cdot)\) \(\chi_{185}(42,\cdot)\) \(\chi_{185}(72,\cdot)\) \(\chi_{185}(87,\cdot)\) \(\chi_{185}(98,\cdot)\) \(\chi_{185}(113,\cdot)\) \(\chi_{185}(143,\cdot)\) \(\chi_{185}(163,\cdot)\) \(\chi_{185}(167,\cdot)\) \(\chi_{185}(168,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | 36.36.57444765302724909954814307473256133361395843470561362005770206451416015625.2 |
Values on generators
\((112,76)\) → \((-i,e\left(\frac{25}{36}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
\( \chi_{ 185 }(168, a) \) | \(1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(-i\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)