sage: H = DirichletGroup(1859)
pari: g = idealstar(,1859,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 1560 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{780}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{1859}(508,\cdot)$, $\chi_{1859}(1354,\cdot)$ |
First 32 of 1560 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1859}(1,\cdot)\) | 1859.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1859}(2,\cdot)\) | 1859.bv | 780 | yes | \(1\) | \(1\) | \(e\left(\frac{83}{780}\right)\) | \(e\left(\frac{116}{195}\right)\) | \(e\left(\frac{83}{390}\right)\) | \(e\left(\frac{119}{260}\right)\) | \(e\left(\frac{547}{780}\right)\) | \(e\left(\frac{301}{780}\right)\) | \(e\left(\frac{83}{260}\right)\) | \(e\left(\frac{37}{195}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{21}{26}\right)\) |
\(\chi_{1859}(3,\cdot)\) | 1859.bo | 195 | yes | \(1\) | \(1\) | \(e\left(\frac{116}{195}\right)\) | \(e\left(\frac{188}{195}\right)\) | \(e\left(\frac{37}{195}\right)\) | \(e\left(\frac{23}{65}\right)\) | \(e\left(\frac{109}{195}\right)\) | \(e\left(\frac{127}{195}\right)\) | \(e\left(\frac{51}{65}\right)\) | \(e\left(\frac{181}{195}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{2}{13}\right)\) |
\(\chi_{1859}(4,\cdot)\) | 1859.bs | 390 | yes | \(1\) | \(1\) | \(e\left(\frac{83}{390}\right)\) | \(e\left(\frac{37}{195}\right)\) | \(e\left(\frac{83}{195}\right)\) | \(e\left(\frac{119}{130}\right)\) | \(e\left(\frac{157}{390}\right)\) | \(e\left(\frac{301}{390}\right)\) | \(e\left(\frac{83}{130}\right)\) | \(e\left(\frac{74}{195}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{8}{13}\right)\) |
\(\chi_{1859}(5,\cdot)\) | 1859.bq | 260 | yes | \(-1\) | \(1\) | \(e\left(\frac{119}{260}\right)\) | \(e\left(\frac{23}{65}\right)\) | \(e\left(\frac{119}{130}\right)\) | \(e\left(\frac{31}{260}\right)\) | \(e\left(\frac{211}{260}\right)\) | \(e\left(\frac{253}{260}\right)\) | \(e\left(\frac{97}{260}\right)\) | \(e\left(\frac{46}{65}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{7}{26}\right)\) |
\(\chi_{1859}(6,\cdot)\) | 1859.bv | 780 | yes | \(1\) | \(1\) | \(e\left(\frac{547}{780}\right)\) | \(e\left(\frac{109}{195}\right)\) | \(e\left(\frac{157}{390}\right)\) | \(e\left(\frac{211}{260}\right)\) | \(e\left(\frac{203}{780}\right)\) | \(e\left(\frac{29}{780}\right)\) | \(e\left(\frac{27}{260}\right)\) | \(e\left(\frac{23}{195}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{25}{26}\right)\) |
\(\chi_{1859}(7,\cdot)\) | 1859.bv | 780 | yes | \(1\) | \(1\) | \(e\left(\frac{301}{780}\right)\) | \(e\left(\frac{127}{195}\right)\) | \(e\left(\frac{301}{390}\right)\) | \(e\left(\frac{253}{260}\right)\) | \(e\left(\frac{29}{780}\right)\) | \(e\left(\frac{227}{780}\right)\) | \(e\left(\frac{41}{260}\right)\) | \(e\left(\frac{59}{195}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{11}{26}\right)\) |
\(\chi_{1859}(8,\cdot)\) | 1859.bp | 260 | yes | \(1\) | \(1\) | \(e\left(\frac{83}{260}\right)\) | \(e\left(\frac{51}{65}\right)\) | \(e\left(\frac{83}{130}\right)\) | \(e\left(\frac{97}{260}\right)\) | \(e\left(\frac{27}{260}\right)\) | \(e\left(\frac{41}{260}\right)\) | \(e\left(\frac{249}{260}\right)\) | \(e\left(\frac{37}{65}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{11}{26}\right)\) |
\(\chi_{1859}(9,\cdot)\) | 1859.bo | 195 | yes | \(1\) | \(1\) | \(e\left(\frac{37}{195}\right)\) | \(e\left(\frac{181}{195}\right)\) | \(e\left(\frac{74}{195}\right)\) | \(e\left(\frac{46}{65}\right)\) | \(e\left(\frac{23}{195}\right)\) | \(e\left(\frac{59}{195}\right)\) | \(e\left(\frac{37}{65}\right)\) | \(e\left(\frac{167}{195}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{4}{13}\right)\) |
\(\chi_{1859}(10,\cdot)\) | 1859.bi | 78 | yes | \(-1\) | \(1\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{1}{13}\right)\) |
\(\chi_{1859}(12,\cdot)\) | 1859.w | 26 | no | \(1\) | \(1\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) |
\(\chi_{1859}(14,\cdot)\) | 1859.bf | 65 | yes | \(1\) | \(1\) | \(e\left(\frac{32}{65}\right)\) | \(e\left(\frac{16}{65}\right)\) | \(e\left(\frac{64}{65}\right)\) | \(e\left(\frac{28}{65}\right)\) | \(e\left(\frac{48}{65}\right)\) | \(e\left(\frac{44}{65}\right)\) | \(e\left(\frac{31}{65}\right)\) | \(e\left(\frac{32}{65}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) |
\(\chi_{1859}(15,\cdot)\) | 1859.bu | 780 | yes | \(-1\) | \(1\) | \(e\left(\frac{41}{780}\right)\) | \(e\left(\frac{62}{195}\right)\) | \(e\left(\frac{41}{390}\right)\) | \(e\left(\frac{123}{260}\right)\) | \(e\left(\frac{289}{780}\right)\) | \(e\left(\frac{487}{780}\right)\) | \(e\left(\frac{41}{260}\right)\) | \(e\left(\frac{124}{195}\right)\) | \(e\left(\frac{41}{78}\right)\) | \(e\left(\frac{11}{26}\right)\) |
\(\chi_{1859}(16,\cdot)\) | 1859.bo | 195 | yes | \(1\) | \(1\) | \(e\left(\frac{83}{195}\right)\) | \(e\left(\frac{74}{195}\right)\) | \(e\left(\frac{166}{195}\right)\) | \(e\left(\frac{54}{65}\right)\) | \(e\left(\frac{157}{195}\right)\) | \(e\left(\frac{106}{195}\right)\) | \(e\left(\frac{18}{65}\right)\) | \(e\left(\frac{148}{195}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{3}{13}\right)\) |
\(\chi_{1859}(17,\cdot)\) | 1859.br | 390 | yes | \(-1\) | \(1\) | \(e\left(\frac{163}{195}\right)\) | \(e\left(\frac{49}{195}\right)\) | \(e\left(\frac{131}{195}\right)\) | \(e\left(\frac{3}{130}\right)\) | \(e\left(\frac{17}{195}\right)\) | \(e\left(\frac{86}{195}\right)\) | \(e\left(\frac{33}{65}\right)\) | \(e\left(\frac{98}{195}\right)\) | \(e\left(\frac{67}{78}\right)\) | \(e\left(\frac{12}{13}\right)\) |
\(\chi_{1859}(18,\cdot)\) | 1859.bp | 260 | yes | \(1\) | \(1\) | \(e\left(\frac{77}{260}\right)\) | \(e\left(\frac{34}{65}\right)\) | \(e\left(\frac{77}{130}\right)\) | \(e\left(\frac{43}{260}\right)\) | \(e\left(\frac{213}{260}\right)\) | \(e\left(\frac{179}{260}\right)\) | \(e\left(\frac{231}{260}\right)\) | \(e\left(\frac{3}{65}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{3}{26}\right)\) |
\(\chi_{1859}(19,\cdot)\) | 1859.bd | 60 | no | \(1\) | \(1\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) |
\(\chi_{1859}(20,\cdot)\) | 1859.bu | 780 | yes | \(-1\) | \(1\) | \(e\left(\frac{523}{780}\right)\) | \(e\left(\frac{106}{195}\right)\) | \(e\left(\frac{133}{390}\right)\) | \(e\left(\frac{9}{260}\right)\) | \(e\left(\frac{167}{780}\right)\) | \(e\left(\frac{581}{780}\right)\) | \(e\left(\frac{3}{260}\right)\) | \(e\left(\frac{17}{195}\right)\) | \(e\left(\frac{55}{78}\right)\) | \(e\left(\frac{23}{26}\right)\) |
\(\chi_{1859}(21,\cdot)\) | 1859.bb | 52 | yes | \(1\) | \(1\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{15}{26}\right)\) |
\(\chi_{1859}(23,\cdot)\) | 1859.j | 6 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) |
\(\chi_{1859}(24,\cdot)\) | 1859.bv | 780 | yes | \(1\) | \(1\) | \(e\left(\frac{713}{780}\right)\) | \(e\left(\frac{146}{195}\right)\) | \(e\left(\frac{323}{390}\right)\) | \(e\left(\frac{189}{260}\right)\) | \(e\left(\frac{517}{780}\right)\) | \(e\left(\frac{631}{780}\right)\) | \(e\left(\frac{193}{260}\right)\) | \(e\left(\frac{97}{195}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{15}{26}\right)\) |
\(\chi_{1859}(25,\cdot)\) | 1859.bj | 130 | yes | \(1\) | \(1\) | \(e\left(\frac{119}{130}\right)\) | \(e\left(\frac{46}{65}\right)\) | \(e\left(\frac{54}{65}\right)\) | \(e\left(\frac{31}{130}\right)\) | \(e\left(\frac{81}{130}\right)\) | \(e\left(\frac{123}{130}\right)\) | \(e\left(\frac{97}{130}\right)\) | \(e\left(\frac{27}{65}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) |
\(\chi_{1859}(27,\cdot)\) | 1859.bf | 65 | yes | \(1\) | \(1\) | \(e\left(\frac{51}{65}\right)\) | \(e\left(\frac{58}{65}\right)\) | \(e\left(\frac{37}{65}\right)\) | \(e\left(\frac{4}{65}\right)\) | \(e\left(\frac{44}{65}\right)\) | \(e\left(\frac{62}{65}\right)\) | \(e\left(\frac{23}{65}\right)\) | \(e\left(\frac{51}{65}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) |
\(\chi_{1859}(28,\cdot)\) | 1859.bv | 780 | yes | \(1\) | \(1\) | \(e\left(\frac{467}{780}\right)\) | \(e\left(\frac{164}{195}\right)\) | \(e\left(\frac{77}{390}\right)\) | \(e\left(\frac{231}{260}\right)\) | \(e\left(\frac{343}{780}\right)\) | \(e\left(\frac{49}{780}\right)\) | \(e\left(\frac{207}{260}\right)\) | \(e\left(\frac{133}{195}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{1}{26}\right)\) |
\(\chi_{1859}(29,\cdot)\) | 1859.bt | 390 | yes | \(-1\) | \(1\) | \(e\left(\frac{373}{390}\right)\) | \(e\left(\frac{77}{195}\right)\) | \(e\left(\frac{178}{195}\right)\) | \(e\left(\frac{7}{65}\right)\) | \(e\left(\frac{137}{390}\right)\) | \(e\left(\frac{131}{390}\right)\) | \(e\left(\frac{113}{130}\right)\) | \(e\left(\frac{154}{195}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{4}{13}\right)\) |
\(\chi_{1859}(30,\cdot)\) | 1859.br | 390 | yes | \(-1\) | \(1\) | \(e\left(\frac{31}{195}\right)\) | \(e\left(\frac{178}{195}\right)\) | \(e\left(\frac{62}{195}\right)\) | \(e\left(\frac{121}{130}\right)\) | \(e\left(\frac{14}{195}\right)\) | \(e\left(\frac{2}{195}\right)\) | \(e\left(\frac{31}{65}\right)\) | \(e\left(\frac{161}{195}\right)\) | \(e\left(\frac{7}{78}\right)\) | \(e\left(\frac{3}{13}\right)\) |
\(\chi_{1859}(31,\cdot)\) | 1859.bq | 260 | yes | \(-1\) | \(1\) | \(e\left(\frac{191}{260}\right)\) | \(e\left(\frac{32}{65}\right)\) | \(e\left(\frac{61}{130}\right)\) | \(e\left(\frac{159}{260}\right)\) | \(e\left(\frac{59}{260}\right)\) | \(e\left(\frac{157}{260}\right)\) | \(e\left(\frac{53}{260}\right)\) | \(e\left(\frac{64}{65}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{25}{26}\right)\) |
\(\chi_{1859}(32,\cdot)\) | 1859.bn | 156 | yes | \(1\) | \(1\) | \(e\left(\frac{83}{156}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{79}{156}\right)\) | \(e\left(\frac{145}{156}\right)\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{1}{26}\right)\) |
\(\chi_{1859}(34,\cdot)\) | 1859.bc | 52 | no | \(-1\) | \(1\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{19}{26}\right)\) |
\(\chi_{1859}(35,\cdot)\) | 1859.bt | 390 | yes | \(-1\) | \(1\) | \(e\left(\frac{329}{390}\right)\) | \(e\left(\frac{1}{195}\right)\) | \(e\left(\frac{134}{195}\right)\) | \(e\left(\frac{6}{65}\right)\) | \(e\left(\frac{331}{390}\right)\) | \(e\left(\frac{103}{390}\right)\) | \(e\left(\frac{69}{130}\right)\) | \(e\left(\frac{2}{195}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{9}{13}\right)\) |
\(\chi_{1859}(36,\cdot)\) | 1859.bs | 390 | yes | \(1\) | \(1\) | \(e\left(\frac{157}{390}\right)\) | \(e\left(\frac{23}{195}\right)\) | \(e\left(\frac{157}{195}\right)\) | \(e\left(\frac{81}{130}\right)\) | \(e\left(\frac{203}{390}\right)\) | \(e\left(\frac{29}{390}\right)\) | \(e\left(\frac{27}{130}\right)\) | \(e\left(\frac{46}{195}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{12}{13}\right)\) |
\(\chi_{1859}(37,\cdot)\) | 1859.bu | 780 | yes | \(-1\) | \(1\) | \(e\left(\frac{131}{780}\right)\) | \(e\left(\frac{122}{195}\right)\) | \(e\left(\frac{131}{390}\right)\) | \(e\left(\frac{133}{260}\right)\) | \(e\left(\frac{619}{780}\right)\) | \(e\left(\frac{757}{780}\right)\) | \(e\left(\frac{131}{260}\right)\) | \(e\left(\frac{49}{195}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{25}{26}\right)\) |