Properties

Label 1859.21
Modulus $1859$
Conductor $1859$
Order $52$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1859, base_ring=CyclotomicField(52))
 
M = H._module
 
chi = DirichletCharacter(H, M([26,25]))
 
pari: [g,chi] = znchar(Mod(21,1859))
 

Basic properties

Modulus: \(1859\)
Conductor: \(1859\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(52\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1859.bb

\(\chi_{1859}(21,\cdot)\) \(\chi_{1859}(109,\cdot)\) \(\chi_{1859}(164,\cdot)\) \(\chi_{1859}(252,\cdot)\) \(\chi_{1859}(307,\cdot)\) \(\chi_{1859}(395,\cdot)\) \(\chi_{1859}(450,\cdot)\) \(\chi_{1859}(538,\cdot)\) \(\chi_{1859}(593,\cdot)\) \(\chi_{1859}(681,\cdot)\) \(\chi_{1859}(736,\cdot)\) \(\chi_{1859}(824,\cdot)\) \(\chi_{1859}(879,\cdot)\) \(\chi_{1859}(967,\cdot)\) \(\chi_{1859}(1022,\cdot)\) \(\chi_{1859}(1110,\cdot)\) \(\chi_{1859}(1165,\cdot)\) \(\chi_{1859}(1308,\cdot)\) \(\chi_{1859}(1396,\cdot)\) \(\chi_{1859}(1539,\cdot)\) \(\chi_{1859}(1594,\cdot)\) \(\chi_{1859}(1682,\cdot)\) \(\chi_{1859}(1737,\cdot)\) \(\chi_{1859}(1825,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{52})$
Fixed field: Number field defined by a degree 52 polynomial

Values on generators

\((508,1354)\) → \((-1,e\left(\frac{25}{52}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 1859 }(21, a) \) \(1\)\(1\)\(e\left(\frac{51}{52}\right)\)\(e\left(\frac{8}{13}\right)\)\(e\left(\frac{25}{26}\right)\)\(e\left(\frac{17}{52}\right)\)\(e\left(\frac{31}{52}\right)\)\(e\left(\frac{49}{52}\right)\)\(e\left(\frac{49}{52}\right)\)\(e\left(\frac{3}{13}\right)\)\(e\left(\frac{4}{13}\right)\)\(e\left(\frac{15}{26}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1859 }(21,a) \;\) at \(\;a = \) e.g. 2