Properties

Label 1859.9
Modulus 18591859
Conductor 18591859
Order 195195
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1859, base_ring=CyclotomicField(390)) M = H._module chi = DirichletCharacter(H, M([234,230]))
 
Copy content pari:[g,chi] = znchar(Mod(9,1859))
 

Basic properties

Modulus: 18591859
Conductor: 18591859
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 195195
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1859.bo

χ1859(3,)\chi_{1859}(3,\cdot) χ1859(9,)\chi_{1859}(9,\cdot) χ1859(16,)\chi_{1859}(16,\cdot) χ1859(42,)\chi_{1859}(42,\cdot) χ1859(48,)\chi_{1859}(48,\cdot) χ1859(81,)\chi_{1859}(81,\cdot) χ1859(113,)\chi_{1859}(113,\cdot) χ1859(126,)\chi_{1859}(126,\cdot) χ1859(152,)\chi_{1859}(152,\cdot) χ1859(159,)\chi_{1859}(159,\cdot) χ1859(185,)\chi_{1859}(185,\cdot) χ1859(224,)\chi_{1859}(224,\cdot) χ1859(256,)\chi_{1859}(256,\cdot) χ1859(269,)\chi_{1859}(269,\cdot) χ1859(289,)\chi_{1859}(289,\cdot) χ1859(295,)\chi_{1859}(295,\cdot) χ1859(302,)\chi_{1859}(302,\cdot) χ1859(328,)\chi_{1859}(328,\cdot) χ1859(334,)\chi_{1859}(334,\cdot) χ1859(367,)\chi_{1859}(367,\cdot) χ1859(399,)\chi_{1859}(399,\cdot) χ1859(412,)\chi_{1859}(412,\cdot) χ1859(432,)\chi_{1859}(432,\cdot) χ1859(438,)\chi_{1859}(438,\cdot) χ1859(445,)\chi_{1859}(445,\cdot) χ1859(471,)\chi_{1859}(471,\cdot) χ1859(477,)\chi_{1859}(477,\cdot) χ1859(510,)\chi_{1859}(510,\cdot) χ1859(542,)\chi_{1859}(542,\cdot) χ1859(555,)\chi_{1859}(555,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ195)\Q(\zeta_{195})
Fixed field: Number field defined by a degree 195 polynomial (not computed)

Values on generators

(508,1354)(508,1354)(e(35),e(2339))(e\left(\frac{3}{5}\right),e\left(\frac{23}{39}\right))

First values

aa 1-111223344556677889910101212
χ1859(9,a) \chi_{ 1859 }(9, a) 1111e(37195)e\left(\frac{37}{195}\right)e(181195)e\left(\frac{181}{195}\right)e(74195)e\left(\frac{74}{195}\right)e(4665)e\left(\frac{46}{65}\right)e(23195)e\left(\frac{23}{195}\right)e(59195)e\left(\frac{59}{195}\right)e(3765)e\left(\frac{37}{65}\right)e(167195)e\left(\frac{167}{195}\right)e(3539)e\left(\frac{35}{39}\right)e(413)e\left(\frac{4}{13}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ1859(9,a)   \chi_{ 1859 }(9,a) \; at   a=\;a = e.g. 2