sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1859, base_ring=CyclotomicField(390))
M = H._module
chi = DirichletCharacter(H, M([234,230]))
pari:[g,chi] = znchar(Mod(9,1859))
Modulus: | 1859 | |
Conductor: | 1859 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 195 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1859(3,⋅)
χ1859(9,⋅)
χ1859(16,⋅)
χ1859(42,⋅)
χ1859(48,⋅)
χ1859(81,⋅)
χ1859(113,⋅)
χ1859(126,⋅)
χ1859(152,⋅)
χ1859(159,⋅)
χ1859(185,⋅)
χ1859(224,⋅)
χ1859(256,⋅)
χ1859(269,⋅)
χ1859(289,⋅)
χ1859(295,⋅)
χ1859(302,⋅)
χ1859(328,⋅)
χ1859(334,⋅)
χ1859(367,⋅)
χ1859(399,⋅)
χ1859(412,⋅)
χ1859(432,⋅)
χ1859(438,⋅)
χ1859(445,⋅)
χ1859(471,⋅)
χ1859(477,⋅)
χ1859(510,⋅)
χ1859(542,⋅)
χ1859(555,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(508,1354) → (e(53),e(3923))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 |
χ1859(9,a) |
1 | 1 | e(19537) | e(195181) | e(19574) | e(6546) | e(19523) | e(19559) | e(6537) | e(195167) | e(3935) | e(134) |
sage:chi.jacobi_sum(n)