Properties

Label 1859.9
Modulus $1859$
Conductor $1859$
Order $195$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1859, base_ring=CyclotomicField(390))
 
M = H._module
 
chi = DirichletCharacter(H, M([234,230]))
 
pari: [g,chi] = znchar(Mod(9,1859))
 

Basic properties

Modulus: \(1859\)
Conductor: \(1859\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(195\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1859.bo

\(\chi_{1859}(3,\cdot)\) \(\chi_{1859}(9,\cdot)\) \(\chi_{1859}(16,\cdot)\) \(\chi_{1859}(42,\cdot)\) \(\chi_{1859}(48,\cdot)\) \(\chi_{1859}(81,\cdot)\) \(\chi_{1859}(113,\cdot)\) \(\chi_{1859}(126,\cdot)\) \(\chi_{1859}(152,\cdot)\) \(\chi_{1859}(159,\cdot)\) \(\chi_{1859}(185,\cdot)\) \(\chi_{1859}(224,\cdot)\) \(\chi_{1859}(256,\cdot)\) \(\chi_{1859}(269,\cdot)\) \(\chi_{1859}(289,\cdot)\) \(\chi_{1859}(295,\cdot)\) \(\chi_{1859}(302,\cdot)\) \(\chi_{1859}(328,\cdot)\) \(\chi_{1859}(334,\cdot)\) \(\chi_{1859}(367,\cdot)\) \(\chi_{1859}(399,\cdot)\) \(\chi_{1859}(412,\cdot)\) \(\chi_{1859}(432,\cdot)\) \(\chi_{1859}(438,\cdot)\) \(\chi_{1859}(445,\cdot)\) \(\chi_{1859}(471,\cdot)\) \(\chi_{1859}(477,\cdot)\) \(\chi_{1859}(510,\cdot)\) \(\chi_{1859}(542,\cdot)\) \(\chi_{1859}(555,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{195})$
Fixed field: Number field defined by a degree 195 polynomial (not computed)

Values on generators

\((508,1354)\) → \((e\left(\frac{3}{5}\right),e\left(\frac{23}{39}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 1859 }(9, a) \) \(1\)\(1\)\(e\left(\frac{37}{195}\right)\)\(e\left(\frac{181}{195}\right)\)\(e\left(\frac{74}{195}\right)\)\(e\left(\frac{46}{65}\right)\)\(e\left(\frac{23}{195}\right)\)\(e\left(\frac{59}{195}\right)\)\(e\left(\frac{37}{65}\right)\)\(e\left(\frac{167}{195}\right)\)\(e\left(\frac{35}{39}\right)\)\(e\left(\frac{4}{13}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1859 }(9,a) \;\) at \(\;a = \) e.g. 2