Properties

Label 1872.31
Modulus $1872$
Conductor $468$
Order $12$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,0,4,9]))
 
pari: [g,chi] = znchar(Mod(31,1872))
 

Basic properties

Modulus: \(1872\)
Conductor: \(468\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{468}(31,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1872.fg

\(\chi_{1872}(31,\cdot)\) \(\chi_{1872}(463,\cdot)\) \(\chi_{1872}(655,\cdot)\) \(\chi_{1872}(1087,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.1869778640298827501568.1

Values on generators

\((703,469,209,145)\) → \((-1,1,e\left(\frac{1}{3}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1872 }(31, a) \) \(1\)\(1\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{1}{12}\right)\)\(-1\)\(i\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{11}{12}\right)\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1872 }(31,a) \;\) at \(\;a = \) e.g. 2