Properties

Label 1872.431
Modulus $1872$
Conductor $156$
Order $12$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,0,6,1]))
 
pari: [g,chi] = znchar(Mod(431,1872))
 

Basic properties

Modulus: \(1872\)
Conductor: \(156\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{156}(119,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1872.fr

\(\chi_{1872}(431,\cdot)\) \(\chi_{1872}(1007,\cdot)\) \(\chi_{1872}(1151,\cdot)\) \(\chi_{1872}(1727,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.5351362262028177408.1

Values on generators

\((703,469,209,145)\) → \((-1,1,-1,e\left(\frac{1}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1872 }(431, a) \) \(-1\)\(1\)\(i\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(-1\)\(e\left(\frac{5}{6}\right)\)\(i\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1872 }(431,a) \;\) at \(\;a = \) e.g. 2