Properties

Label 1881.778
Modulus 18811881
Conductor 18811881
Order 3030
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,9,15]))
 
pari: [g,chi] = znchar(Mod(778,1881))
 

Basic properties

Modulus: 18811881
Conductor: 18811881
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3030
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1881.ds

χ1881(94,)\chi_{1881}(94,\cdot) χ1881(151,)\chi_{1881}(151,\cdot) χ1881(436,)\chi_{1881}(436,\cdot) χ1881(607,)\chi_{1881}(607,\cdot) χ1881(778,)\chi_{1881}(778,\cdot) χ1881(1348,)\chi_{1881}(1348,\cdot) χ1881(1690,)\chi_{1881}(1690,\cdot) χ1881(1861,)\chi_{1881}(1861,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ15)\Q(\zeta_{15})
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

(1046,343,496)(1046,343,496)(e(13),e(310),1)(e\left(\frac{1}{3}\right),e\left(\frac{3}{10}\right),-1)

First values

aa 1-111224455778810101313141416161717
χ1881(778,a) \chi_{ 1881 }(778, a) 1111e(215)e\left(\frac{2}{15}\right)e(415)e\left(\frac{4}{15}\right)e(1315)e\left(\frac{13}{15}\right)e(1330)e\left(\frac{13}{30}\right)e(25)e\left(\frac{2}{5}\right)11e(715)e\left(\frac{7}{15}\right)e(1730)e\left(\frac{17}{30}\right)e(815)e\left(\frac{8}{15}\right)e(710)e\left(\frac{7}{10}\right)
sage: chi.jacobi_sum(n)
 
χ1881(778,a)   \chi_{ 1881 }(778,a) \; at   a=\;a = e.g. 2