from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1881, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([10,9,15]))
pari: [g,chi] = znchar(Mod(778,1881))
Basic properties
Modulus: | \(1881\) | |
Conductor: | \(1881\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(30\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1881.ds
\(\chi_{1881}(94,\cdot)\) \(\chi_{1881}(151,\cdot)\) \(\chi_{1881}(436,\cdot)\) \(\chi_{1881}(607,\cdot)\) \(\chi_{1881}(778,\cdot)\) \(\chi_{1881}(1348,\cdot)\) \(\chi_{1881}(1690,\cdot)\) \(\chi_{1881}(1861,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | Number field defined by a degree 30 polynomial |
Values on generators
\((1046,343,496)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{3}{10}\right),-1)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 1881 }(778, a) \) | \(1\) | \(1\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(1\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{7}{10}\right)\) |
sage: chi.jacobi_sum(n)