Properties

Label 1881.cb
Modulus $1881$
Conductor $209$
Order $15$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,18,10]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(64,1881))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1881\)
Conductor: \(209\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(15\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 209.n
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 15 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(13\) \(14\) \(16\) \(17\)
\(\chi_{1881}(64,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{1881}(163,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{15}\right)\)
\(\chi_{1881}(235,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{2}{15}\right)\)
\(\chi_{1881}(334,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{1881}(577,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{1881}(676,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{1881}(1774,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{1881}(1873,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{13}{15}\right)\)