Properties

Label 189.25
Modulus 189189
Conductor 189189
Order 99
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,12]))
 
pari: [g,chi] = znchar(Mod(25,189))
 

Basic properties

Modulus: 189189
Conductor: 189189
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 99
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 189.w

χ189(25,)\chi_{189}(25,\cdot) χ189(58,)\chi_{189}(58,\cdot) χ189(88,)\chi_{189}(88,\cdot) χ189(121,)\chi_{189}(121,\cdot) χ189(151,)\chi_{189}(151,\cdot) χ189(184,)\chi_{189}(184,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: 9.9.3691950281939241.2

Values on generators

(29,136)(29,136)(e(59),e(23))(e\left(\frac{5}{9}\right),e\left(\frac{2}{3}\right))

First values

aa 1-11122445588101011111313161617171919
χ189(25,a) \chi_{ 189 }(25, a) 1111e(89)e\left(\frac{8}{9}\right)e(79)e\left(\frac{7}{9}\right)e(19)e\left(\frac{1}{9}\right)e(23)e\left(\frac{2}{3}\right)11e(89)e\left(\frac{8}{9}\right)e(49)e\left(\frac{4}{9}\right)e(59)e\left(\frac{5}{9}\right)1111
sage: chi.jacobi_sum(n)
 
χ189(25,a)   \chi_{ 189 }(25,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ189(25,))   \tau_{ a }( \chi_{ 189 }(25,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ189(25,),χ189(n,))   J(\chi_{ 189 }(25,·),\chi_{ 189 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ189(25,))  K(a,b,\chi_{ 189 }(25,·)) \; at   a,b=\; a,b = e.g. 1,2