Properties

Label 189.47
Modulus 189189
Conductor 189189
Order 1818
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([7,15]))
 
pari: [g,chi] = znchar(Mod(47,189))
 

Basic properties

Modulus: 189189
Conductor: 189189
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 189.bd

χ189(47,)\chi_{189}(47,\cdot) χ189(59,)\chi_{189}(59,\cdot) χ189(110,)\chi_{189}(110,\cdot) χ189(122,)\chi_{189}(122,\cdot) χ189(173,)\chi_{189}(173,\cdot) χ189(185,)\chi_{189}(185,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(29,136)(29,136)(e(718),e(56))(e\left(\frac{7}{18}\right),e\left(\frac{5}{6}\right))

First values

aa 1-11122445588101011111313161617171919
χ189(47,a) \chi_{ 189 }(47, a) 1111e(118)e\left(\frac{1}{18}\right)e(19)e\left(\frac{1}{9}\right)e(19)e\left(\frac{1}{9}\right)e(16)e\left(\frac{1}{6}\right)e(16)e\left(\frac{1}{6}\right)e(718)e\left(\frac{7}{18}\right)e(1118)e\left(\frac{11}{18}\right)e(29)e\left(\frac{2}{9}\right)e(23)e\left(\frac{2}{3}\right)e(56)e\left(\frac{5}{6}\right)
sage: chi.jacobi_sum(n)
 
χ189(47,a)   \chi_{ 189 }(47,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ189(47,))   \tau_{ a }( \chi_{ 189 }(47,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ189(47,),χ189(n,))   J(\chi_{ 189 }(47,·),\chi_{ 189 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ189(47,))  K(a,b,\chi_{ 189 }(47,·)) \; at   a,b=\; a,b = e.g. 1,2