Properties

Label 1900.1107
Modulus $1900$
Conductor $380$
Order $36$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1900, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,9,32]))
 
pari: [g,chi] = znchar(Mod(1107,1900))
 

Basic properties

Modulus: \(1900\)
Conductor: \(380\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{380}(347,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1900.cd

\(\chi_{1900}(43,\cdot)\) \(\chi_{1900}(207,\cdot)\) \(\chi_{1900}(443,\cdot)\) \(\chi_{1900}(643,\cdot)\) \(\chi_{1900}(707,\cdot)\) \(\chi_{1900}(807,\cdot)\) \(\chi_{1900}(1043,\cdot)\) \(\chi_{1900}(1107,\cdot)\) \(\chi_{1900}(1507,\cdot)\) \(\chi_{1900}(1543,\cdot)\) \(\chi_{1900}(1643,\cdot)\) \(\chi_{1900}(1707,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

\((951,77,401)\) → \((-1,i,e\left(\frac{8}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 1900 }(1107, a) \) \(1\)\(1\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{5}{36}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{36}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{11}{18}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1900 }(1107,a) \;\) at \(\;a = \) e.g. 2