Properties

Label 1911.1868
Modulus 19111911
Conductor 19111911
Order 4242
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1911, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,27,28]))
 
pari: [g,chi] = znchar(Mod(1868,1911))
 

Basic properties

Modulus: 19111911
Conductor: 19111911
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4242
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1911.dc

χ1911(230,)\chi_{1911}(230,\cdot) χ1911(419,)\chi_{1911}(419,\cdot) χ1911(503,)\chi_{1911}(503,\cdot) χ1911(692,)\chi_{1911}(692,\cdot) χ1911(776,)\chi_{1911}(776,\cdot) χ1911(965,)\chi_{1911}(965,\cdot) χ1911(1049,)\chi_{1911}(1049,\cdot) χ1911(1238,)\chi_{1911}(1238,\cdot) χ1911(1511,)\chi_{1911}(1511,\cdot) χ1911(1595,)\chi_{1911}(1595,\cdot) χ1911(1784,)\chi_{1911}(1784,\cdot) χ1911(1868,)\chi_{1911}(1868,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ21)\Q(\zeta_{21})
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

(638,1522,1471)(638,1522,1471)(1,e(914),e(23))(-1,e\left(\frac{9}{14}\right),e\left(\frac{2}{3}\right))

First values

aa 1-11122445588101011111616171719192020
χ1911(1868,a) \chi_{ 1911 }(1868, a) 1111e(3742)e\left(\frac{37}{42}\right)e(1621)e\left(\frac{16}{21}\right)e(17)e\left(\frac{1}{7}\right)e(914)e\left(\frac{9}{14}\right)e(142)e\left(\frac{1}{42}\right)e(3742)e\left(\frac{37}{42}\right)e(1121)e\left(\frac{11}{21}\right)e(1921)e\left(\frac{19}{21}\right)e(56)e\left(\frac{5}{6}\right)e(1921)e\left(\frac{19}{21}\right)
sage: chi.jacobi_sum(n)
 
χ1911(1868,a)   \chi_{ 1911 }(1868,a) \; at   a=\;a = e.g. 2