Properties

Label 1920.1327
Modulus 19201920
Conductor 160160
Order 88
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1920, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([4,3,0,2]))
 
Copy content pari:[g,chi] = znchar(Mod(1327,1920))
 

Basic properties

Modulus: 19201920
Conductor: 160160
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 88
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ160(67,)\chi_{160}(67,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1920.bo

χ1920(367,)\chi_{1920}(367,\cdot) χ1920(463,)\chi_{1920}(463,\cdot) χ1920(1327,)\chi_{1920}(1327,\cdot) χ1920(1423,)\chi_{1920}(1423,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: 8.8.33554432000000.2

Values on generators

(511,901,641,1537)(511,901,641,1537)(1,e(38),1,i)(-1,e\left(\frac{3}{8}\right),1,i)

First values

aa 1-11177111113131717191923232929313137374141
χ1920(1327,a) \chi_{ 1920 }(1327, a) 11111-1e(38)e\left(\frac{3}{8}\right)e(38)e\left(\frac{3}{8}\right)i-ie(58)e\left(\frac{5}{8}\right)1-1e(58)e\left(\frac{5}{8}\right)1-1e(58)e\left(\frac{5}{8}\right)ii
Copy content sage:chi.jacobi_sum(n)
 
χ1920(1327,a)   \chi_{ 1920 }(1327,a) \; at   a=\;a = e.g. 2