Properties

Label 1920.953
Modulus $1920$
Conductor $960$
Order $16$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,13,8,12]))
 
pari: [g,chi] = znchar(Mod(953,1920))
 

Basic properties

Modulus: \(1920\)
Conductor: \(960\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{960}(533,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1920.cr

\(\chi_{1920}(137,\cdot)\) \(\chi_{1920}(473,\cdot)\) \(\chi_{1920}(617,\cdot)\) \(\chi_{1920}(953,\cdot)\) \(\chi_{1920}(1097,\cdot)\) \(\chi_{1920}(1433,\cdot)\) \(\chi_{1920}(1577,\cdot)\) \(\chi_{1920}(1913,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.968232702940866945220608000000000000.1

Values on generators

\((511,901,641,1537)\) → \((1,e\left(\frac{13}{16}\right),-1,-i)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1920 }(953, a) \) \(1\)\(1\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{7}{16}\right)\)\(1\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{15}{16}\right)\)\(-1\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{7}{8}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1920 }(953,a) \;\) at \(\;a = \) e.g. 2