Properties

Label 1920.953
Modulus 19201920
Conductor 960960
Order 1616
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1920, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,13,8,12]))
 
Copy content pari:[g,chi] = znchar(Mod(953,1920))
 

Basic properties

Modulus: 19201920
Conductor: 960960
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1616
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ960(533,)\chi_{960}(533,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1920.cr

χ1920(137,)\chi_{1920}(137,\cdot) χ1920(473,)\chi_{1920}(473,\cdot) χ1920(617,)\chi_{1920}(617,\cdot) χ1920(953,)\chi_{1920}(953,\cdot) χ1920(1097,)\chi_{1920}(1097,\cdot) χ1920(1433,)\chi_{1920}(1433,\cdot) χ1920(1577,)\chi_{1920}(1577,\cdot) χ1920(1913,)\chi_{1920}(1913,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ16)\Q(\zeta_{16})
Fixed field: 16.16.968232702940866945220608000000000000.1

Values on generators

(511,901,641,1537)(511,901,641,1537)(1,e(1316),1,i)(1,e\left(\frac{13}{16}\right),-1,-i)

First values

aa 1-11177111113131717191923232929313137374141
χ1920(953,a) \chi_{ 1920 }(953, a) 1111e(78)e\left(\frac{7}{8}\right)e(916)e\left(\frac{9}{16}\right)e(716)e\left(\frac{7}{16}\right)11e(316)e\left(\frac{3}{16}\right)e(18)e\left(\frac{1}{8}\right)e(1516)e\left(\frac{15}{16}\right)1-1e(116)e\left(\frac{1}{16}\right)e(78)e\left(\frac{7}{8}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ1920(953,a)   \chi_{ 1920 }(953,a) \; at   a=\;a = e.g. 2