Properties

Modulus $1925$
Structure \(C_{2}\times C_{10}\times C_{60}\)
Order $1200$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(1925)
 
pari: g = idealstar(,1925,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 1200
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{10}\times C_{60}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{1925}(1002,\cdot)$, $\chi_{1925}(276,\cdot)$, $\chi_{1925}(1751,\cdot)$

First 32 of 1200 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(8\) \(9\) \(12\) \(13\) \(16\) \(17\)
\(\chi_{1925}(1,\cdot)\) 1925.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{1925}(2,\cdot)\) 1925.gc 60 yes \(1\) \(1\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{53}{60}\right)\)
\(\chi_{1925}(3,\cdot)\) 1925.fo 60 yes \(1\) \(1\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(-1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{1925}(4,\cdot)\) 1925.ef 30 yes \(1\) \(1\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{23}{30}\right)\)
\(\chi_{1925}(6,\cdot)\) 1925.bu 10 yes \(1\) \(1\) \(e\left(\frac{3}{10}\right)\) \(-1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(1\) \(e\left(\frac{1}{10}\right)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{1925}(8,\cdot)\) 1925.dr 20 no \(1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{1925}(9,\cdot)\) 1925.ek 30 yes \(1\) \(1\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{14}{15}\right)\) \(1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{1925}(12,\cdot)\) 1925.fz 60 no \(1\) \(1\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{41}{60}\right)\)
\(\chi_{1925}(13,\cdot)\) 1925.dx 20 yes \(-1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(-i\)
\(\chi_{1925}(16,\cdot)\) 1925.cy 15 yes \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{1925}(17,\cdot)\) 1925.fw 60 yes \(-1\) \(1\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{41}{60}\right)\) \(-i\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{43}{60}\right)\)
\(\chi_{1925}(18,\cdot)\) 1925.gd 60 no \(1\) \(1\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{43}{60}\right)\)
\(\chi_{1925}(19,\cdot)\) 1925.fg 30 yes \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{7}{30}\right)\)
\(\chi_{1925}(23,\cdot)\) 1925.fu 60 no \(-1\) \(1\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{29}{60}\right)\)
\(\chi_{1925}(24,\cdot)\) 1925.fe 30 no \(1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{17}{30}\right)\)
\(\chi_{1925}(26,\cdot)\) 1925.fd 30 no \(-1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{19}{30}\right)\)
\(\chi_{1925}(27,\cdot)\) 1925.df 20 yes \(1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(-1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(-i\)
\(\chi_{1925}(29,\cdot)\) 1925.bo 10 no \(-1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{1925}(31,\cdot)\) 1925.dz 30 yes \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{10}\right)\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{23}{30}\right)\)
\(\chi_{1925}(32,\cdot)\) 1925.cq 12 no \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{1925}(34,\cdot)\) 1925.bx 10 no \(-1\) \(1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{1925}(36,\cdot)\) 1925.r 5 no \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{1925}(37,\cdot)\) 1925.fx 60 yes \(-1\) \(1\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{43}{60}\right)\) \(-i\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{59}{60}\right)\)
\(\chi_{1925}(38,\cdot)\) 1925.gb 60 yes \(1\) \(1\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{60}\right)\)
\(\chi_{1925}(39,\cdot)\) 1925.ew 30 yes \(-1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{1}{15}\right)\) \(-1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{1925}(41,\cdot)\) 1925.bc 10 yes \(1\) \(1\) \(-1\) \(e\left(\frac{3}{10}\right)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(-1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{1925}(43,\cdot)\) 1925.k 4 no \(1\) \(1\) \(i\) \(i\) \(-1\) \(-1\) \(-i\) \(-1\) \(-i\) \(-i\) \(1\) \(i\)
\(\chi_{1925}(46,\cdot)\) 1925.eb 30 yes \(-1\) \(1\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{15}\right)\) \(-1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{30}\right)\)
\(\chi_{1925}(47,\cdot)\) 1925.fo 60 yes \(1\) \(1\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(-1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{1925}(48,\cdot)\) 1925.dd 20 yes \(1\) \(1\) \(-i\) \(e\left(\frac{19}{20}\right)\) \(-1\) \(e\left(\frac{7}{10}\right)\) \(i\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(1\) \(e\left(\frac{9}{20}\right)\)
\(\chi_{1925}(51,\cdot)\) 1925.eo 30 no \(-1\) \(1\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{19}{30}\right)\)
\(\chi_{1925}(52,\cdot)\) 1925.fw 60 yes \(-1\) \(1\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{60}\right)\) \(-i\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{31}{60}\right)\)
Click here to search among the remaining 1168 characters.