sage: H = DirichletGroup(1925)
pari: g = idealstar(,1925,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 1200 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{10}\times C_{60}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{1925}(1002,\cdot)$, $\chi_{1925}(276,\cdot)$, $\chi_{1925}(1751,\cdot)$ |
First 32 of 1200 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(12\) | \(13\) | \(16\) | \(17\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1925}(1,\cdot)\) | 1925.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1925}(2,\cdot)\) | 1925.gc | 60 | yes | \(1\) | \(1\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{53}{60}\right)\) |
\(\chi_{1925}(3,\cdot)\) | 1925.fo | 60 | yes | \(1\) | \(1\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(-1\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{1925}(4,\cdot)\) | 1925.ef | 30 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{23}{30}\right)\) |
\(\chi_{1925}(6,\cdot)\) | 1925.bu | 10 | yes | \(1\) | \(1\) | \(e\left(\frac{3}{10}\right)\) | \(-1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(1\) | \(e\left(\frac{1}{10}\right)\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) |
\(\chi_{1925}(8,\cdot)\) | 1925.dr | 20 | no | \(1\) | \(1\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{13}{20}\right)\) |
\(\chi_{1925}(9,\cdot)\) | 1925.ek | 30 | yes | \(1\) | \(1\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{1925}(12,\cdot)\) | 1925.fz | 60 | no | \(1\) | \(1\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{41}{60}\right)\) |
\(\chi_{1925}(13,\cdot)\) | 1925.dx | 20 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(1\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(-i\) |
\(\chi_{1925}(16,\cdot)\) | 1925.cy | 15 | yes | \(1\) | \(1\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) |
\(\chi_{1925}(17,\cdot)\) | 1925.fw | 60 | yes | \(-1\) | \(1\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(-i\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{43}{60}\right)\) |
\(\chi_{1925}(18,\cdot)\) | 1925.gd | 60 | no | \(1\) | \(1\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{43}{60}\right)\) |
\(\chi_{1925}(19,\cdot)\) | 1925.fg | 30 | yes | \(1\) | \(1\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) |
\(\chi_{1925}(23,\cdot)\) | 1925.fu | 60 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{29}{60}\right)\) |
\(\chi_{1925}(24,\cdot)\) | 1925.fe | 30 | no | \(1\) | \(1\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{17}{30}\right)\) |
\(\chi_{1925}(26,\cdot)\) | 1925.fd | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{19}{30}\right)\) |
\(\chi_{1925}(27,\cdot)\) | 1925.df | 20 | yes | \(1\) | \(1\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(-1\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(-i\) |
\(\chi_{1925}(29,\cdot)\) | 1925.bo | 10 | no | \(-1\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) |
\(\chi_{1925}(31,\cdot)\) | 1925.dz | 30 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(1\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{23}{30}\right)\) |
\(\chi_{1925}(32,\cdot)\) | 1925.cq | 12 | no | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{1925}(34,\cdot)\) | 1925.bx | 10 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) |
\(\chi_{1925}(36,\cdot)\) | 1925.r | 5 | no | \(1\) | \(1\) | \(e\left(\frac{3}{5}\right)\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) |
\(\chi_{1925}(37,\cdot)\) | 1925.fx | 60 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(-i\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{59}{60}\right)\) |
\(\chi_{1925}(38,\cdot)\) | 1925.gb | 60 | yes | \(1\) | \(1\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{7}{60}\right)\) |
\(\chi_{1925}(39,\cdot)\) | 1925.ew | 30 | yes | \(-1\) | \(1\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(-1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{1925}(41,\cdot)\) | 1925.bc | 10 | yes | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{3}{10}\right)\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(-1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(1\) | \(e\left(\frac{4}{5}\right)\) |
\(\chi_{1925}(43,\cdot)\) | 1925.k | 4 | no | \(1\) | \(1\) | \(i\) | \(i\) | \(-1\) | \(-1\) | \(-i\) | \(-1\) | \(-i\) | \(-i\) | \(1\) | \(i\) |
\(\chi_{1925}(46,\cdot)\) | 1925.eb | 30 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(-1\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{11}{30}\right)\) |
\(\chi_{1925}(47,\cdot)\) | 1925.fo | 60 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(-1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{1925}(48,\cdot)\) | 1925.dd | 20 | yes | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{19}{20}\right)\) | \(-1\) | \(e\left(\frac{7}{10}\right)\) | \(i\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(1\) | \(e\left(\frac{9}{20}\right)\) |
\(\chi_{1925}(51,\cdot)\) | 1925.eo | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{19}{30}\right)\) |
\(\chi_{1925}(52,\cdot)\) | 1925.fw | 60 | yes | \(-1\) | \(1\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(-i\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{31}{60}\right)\) |