Properties

Label 1925.1083
Modulus 19251925
Conductor 19251925
Order 6060
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1925, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,50,24]))
 
pari: [g,chi] = znchar(Mod(1083,1925))
 

Basic properties

Modulus: 19251925
Conductor: 19251925
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 6060
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1925.ge

χ1925(192,)\chi_{1925}(192,\cdot) χ1925(213,)\chi_{1925}(213,\cdot) χ1925(467,)\chi_{1925}(467,\cdot) χ1925(488,)\chi_{1925}(488,\cdot) χ1925(647,)\chi_{1925}(647,\cdot) χ1925(773,)\chi_{1925}(773,\cdot) χ1925(808,)\chi_{1925}(808,\cdot) χ1925(878,)\chi_{1925}(878,\cdot) χ1925(922,)\chi_{1925}(922,\cdot) χ1925(927,)\chi_{1925}(927,\cdot) χ1925(1048,)\chi_{1925}(1048,\cdot) χ1925(1083,)\chi_{1925}(1083,\cdot) χ1925(1137,)\chi_{1925}(1137,\cdot) χ1925(1153,)\chi_{1925}(1153,\cdot) χ1925(1202,)\chi_{1925}(1202,\cdot) χ1925(1412,)\chi_{1925}(1412,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ60)\Q(\zeta_{60})
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

(1002,276,1751)(1002,276,1751)(e(320),e(56),e(25))(e\left(\frac{3}{20}\right),e\left(\frac{5}{6}\right),e\left(\frac{2}{5}\right))

First values

aa 1-1112233446688991212131316161717
χ1925(1083,a) \chi_{ 1925 }(1083, a) 1111e(1360)e\left(\frac{13}{60}\right)e(112)e\left(\frac{1}{12}\right)e(1330)e\left(\frac{13}{30}\right)e(310)e\left(\frac{3}{10}\right)e(1320)e\left(\frac{13}{20}\right)e(16)e\left(\frac{1}{6}\right)e(3160)e\left(\frac{31}{60}\right)i-ie(1315)e\left(\frac{13}{15}\right)e(2360)e\left(\frac{23}{60}\right)
sage: chi.jacobi_sum(n)
 
χ1925(1083,a)   \chi_{ 1925 }(1083,a) \; at   a=\;a = e.g. 2