from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1925, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([0,25,24]))
pari: [g,chi] = znchar(Mod(201,1925))
Basic properties
Modulus: | \(1925\) | |
Conductor: | \(77\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(30\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{77}(47,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1925.fd
\(\chi_{1925}(26,\cdot)\) \(\chi_{1925}(201,\cdot)\) \(\chi_{1925}(801,\cdot)\) \(\chi_{1925}(1076,\cdot)\) \(\chi_{1925}(1501,\cdot)\) \(\chi_{1925}(1676,\cdot)\) \(\chi_{1925}(1776,\cdot)\) \(\chi_{1925}(1851,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | 30.0.13209167403604364499542354001933559191813355687.1 |
Values on generators
\((1002,276,1751)\) → \((1,e\left(\frac{5}{6}\right),e\left(\frac{4}{5}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(12\) | \(13\) | \(16\) | \(17\) |
\( \chi_{ 1925 }(201, a) \) | \(-1\) | \(1\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) |
sage: chi.jacobi_sum(n)