Properties

Label 1925.3
Modulus 19251925
Conductor 19251925
Order 6060
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1925, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,10,48]))
 
pari: [g,chi] = znchar(Mod(3,1925))
 

Basic properties

Modulus: 19251925
Conductor: 19251925
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 6060
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1925.fo

χ1925(3,)\chi_{1925}(3,\cdot) χ1925(47,)\chi_{1925}(47,\cdot) χ1925(262,)\chi_{1925}(262,\cdot) χ1925(278,)\chi_{1925}(278,\cdot) χ1925(367,)\chi_{1925}(367,\cdot) χ1925(423,)\chi_{1925}(423,\cdot) χ1925(537,)\chi_{1925}(537,\cdot) χ1925(577,)\chi_{1925}(577,\cdot) χ1925(642,)\chi_{1925}(642,\cdot) χ1925(698,)\chi_{1925}(698,\cdot) χ1925(852,)\chi_{1925}(852,\cdot) χ1925(983,)\chi_{1925}(983,\cdot) χ1925(1258,)\chi_{1925}(1258,\cdot) χ1925(1263,)\chi_{1925}(1263,\cdot) χ1925(1538,)\chi_{1925}(1538,\cdot) χ1925(1697,)\chi_{1925}(1697,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ60)\Q(\zeta_{60})
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

(1002,276,1751)(1002,276,1751)(e(720),e(16),e(45))(e\left(\frac{7}{20}\right),e\left(\frac{1}{6}\right),e\left(\frac{4}{5}\right))

First values

aa 1-1112233446688991212131316161717
χ1925(3,a) \chi_{ 1925 }(3, a) 1111e(2960)e\left(\frac{29}{60}\right)e(160)e\left(\frac{1}{60}\right)e(2930)e\left(\frac{29}{30}\right)1-1e(920)e\left(\frac{9}{20}\right)e(130)e\left(\frac{1}{30}\right)e(5960)e\left(\frac{59}{60}\right)e(1920)e\left(\frac{19}{20}\right)e(1415)e\left(\frac{14}{15}\right)e(1112)e\left(\frac{11}{12}\right)
sage: chi.jacobi_sum(n)
 
χ1925(3,a)   \chi_{ 1925 }(3,a) \; at   a=\;a = e.g. 2