sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1925, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([21,20,54]))
pari:[g,chi] = znchar(Mod(303,1925))
Modulus: | 1925 | |
Conductor: | 1925 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 60 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1925(72,⋅)
χ1925(233,⋅)
χ1925(303,⋅)
χ1925(338,⋅)
χ1925(347,⋅)
χ1925(508,⋅)
χ1925(578,⋅)
χ1925(613,⋅)
χ1925(898,⋅)
χ1925(1052,⋅)
χ1925(1173,⋅)
χ1925(1262,⋅)
χ1925(1327,⋅)
χ1925(1537,⋅)
χ1925(1542,⋅)
χ1925(1817,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1002,276,1751) → (e(207),e(31),e(109))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 8 | 9 | 12 | 13 | 16 | 17 |
χ1925(303,a) |
1 | 1 | e(1211) | e(6059) | e(65) | e(109) | −i | e(3029) | e(6049) | e(2011) | e(32) | e(6059) |
sage:chi.jacobi_sum(n)