Properties

Label 1925.46
Modulus 19251925
Conductor 19251925
Order 3030
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1925, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,20,3]))
 
pari: [g,chi] = znchar(Mod(46,1925))
 

Basic properties

Modulus: 19251925
Conductor: 19251925
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3030
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1925.eb

χ1925(46,)\chi_{1925}(46,\cdot) χ1925(261,)\chi_{1925}(261,\cdot) χ1925(536,)\chi_{1925}(536,\cdot) χ1925(1381,)\chi_{1925}(1381,\cdot) χ1925(1591,)\chi_{1925}(1591,\cdot) χ1925(1656,)\chi_{1925}(1656,\cdot) χ1925(1696,)\chi_{1925}(1696,\cdot) χ1925(1866,)\chi_{1925}(1866,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ15)\Q(\zeta_{15})
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

(1002,276,1751)(1002,276,1751)(e(35),e(23),e(110))(e\left(\frac{3}{5}\right),e\left(\frac{2}{3}\right),e\left(\frac{1}{10}\right))

First values

aa 1-1112233446688991212131316161717
χ1925(46,a) \chi_{ 1925 }(46, a) 1-111e(130)e\left(\frac{1}{30}\right)e(23)e\left(\frac{2}{3}\right)e(115)e\left(\frac{1}{15}\right)e(710)e\left(\frac{7}{10}\right)e(110)e\left(\frac{1}{10}\right)e(13)e\left(\frac{1}{3}\right)e(1115)e\left(\frac{11}{15}\right)1-1e(215)e\left(\frac{2}{15}\right)e(1130)e\left(\frac{11}{30}\right)
sage: chi.jacobi_sum(n)
 
χ1925(46,a)   \chi_{ 1925 }(46,a) \; at   a=\;a = e.g. 2