Properties

Label 1925.fw
Modulus 19251925
Conductor 19251925
Order 6060
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1925, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([39,10,54]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(17,1925))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 19251925
Conductor: 19251925
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 6060
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ60)\Q(\zeta_{60})
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character 1-1 11 22 33 44 66 88 99 1212 1313 1616 1717
χ1925(17,)\chi_{1925}(17,\cdot) 1-1 11 e(5360)e\left(\frac{53}{60}\right) e(1112)e\left(\frac{11}{12}\right) e(2330)e\left(\frac{23}{30}\right) e(45)e\left(\frac{4}{5}\right) e(1320)e\left(\frac{13}{20}\right) e(56)e\left(\frac{5}{6}\right) e(4160)e\left(\frac{41}{60}\right) i-i e(815)e\left(\frac{8}{15}\right) e(4360)e\left(\frac{43}{60}\right)
χ1925(52,)\chi_{1925}(52,\cdot) 1-1 11 e(4160)e\left(\frac{41}{60}\right) e(1112)e\left(\frac{11}{12}\right) e(1130)e\left(\frac{11}{30}\right) e(35)e\left(\frac{3}{5}\right) e(120)e\left(\frac{1}{20}\right) e(56)e\left(\frac{5}{6}\right) e(1760)e\left(\frac{17}{60}\right) i-i e(1115)e\left(\frac{11}{15}\right) e(3160)e\left(\frac{31}{60}\right)
χ1925(173,)\chi_{1925}(173,\cdot) 1-1 11 e(3160)e\left(\frac{31}{60}\right) e(112)e\left(\frac{1}{12}\right) e(130)e\left(\frac{1}{30}\right) e(35)e\left(\frac{3}{5}\right) e(1120)e\left(\frac{11}{20}\right) e(16)e\left(\frac{1}{6}\right) e(760)e\left(\frac{7}{60}\right) ii e(115)e\left(\frac{1}{15}\right) e(4160)e\left(\frac{41}{60}\right)
χ1925(178,)\chi_{1925}(178,\cdot) 1-1 11 e(4760)e\left(\frac{47}{60}\right) e(512)e\left(\frac{5}{12}\right) e(1730)e\left(\frac{17}{30}\right) e(15)e\left(\frac{1}{5}\right) e(720)e\left(\frac{7}{20}\right) e(56)e\left(\frac{5}{6}\right) e(5960)e\left(\frac{59}{60}\right) ii e(215)e\left(\frac{2}{15}\right) e(3760)e\left(\frac{37}{60}\right)
χ1925(222,)\chi_{1925}(222,\cdot) 1-1 11 e(3760)e\left(\frac{37}{60}\right) e(712)e\left(\frac{7}{12}\right) e(730)e\left(\frac{7}{30}\right) e(15)e\left(\frac{1}{5}\right) e(1720)e\left(\frac{17}{20}\right) e(16)e\left(\frac{1}{6}\right) e(4960)e\left(\frac{49}{60}\right) i-i e(715)e\left(\frac{7}{15}\right) e(4760)e\left(\frac{47}{60}\right)
χ1925(292,)\chi_{1925}(292,\cdot) 1-1 11 e(1360)e\left(\frac{13}{60}\right) e(712)e\left(\frac{7}{12}\right) e(1330)e\left(\frac{13}{30}\right) e(45)e\left(\frac{4}{5}\right) e(1320)e\left(\frac{13}{20}\right) e(16)e\left(\frac{1}{6}\right) e(160)e\left(\frac{1}{60}\right) i-i e(1315)e\left(\frac{13}{15}\right) e(2360)e\left(\frac{23}{60}\right)
χ1925(327,)\chi_{1925}(327,\cdot) 1-1 11 e(160)e\left(\frac{1}{60}\right) e(712)e\left(\frac{7}{12}\right) e(130)e\left(\frac{1}{30}\right) e(35)e\left(\frac{3}{5}\right) e(120)e\left(\frac{1}{20}\right) e(16)e\left(\frac{1}{6}\right) e(3760)e\left(\frac{37}{60}\right) i-i e(115)e\left(\frac{1}{15}\right) e(1160)e\left(\frac{11}{60}\right)
χ1925(453,)\chi_{1925}(453,\cdot) 1-1 11 e(760)e\left(\frac{7}{60}\right) e(112)e\left(\frac{1}{12}\right) e(730)e\left(\frac{7}{30}\right) e(15)e\left(\frac{1}{5}\right) e(720)e\left(\frac{7}{20}\right) e(16)e\left(\frac{1}{6}\right) e(1960)e\left(\frac{19}{60}\right) ii e(715)e\left(\frac{7}{15}\right) e(1760)e\left(\frac{17}{60}\right)
χ1925(612,)\chi_{1925}(612,\cdot) 1-1 11 e(2960)e\left(\frac{29}{60}\right) e(1112)e\left(\frac{11}{12}\right) e(2930)e\left(\frac{29}{30}\right) e(25)e\left(\frac{2}{5}\right) e(920)e\left(\frac{9}{20}\right) e(56)e\left(\frac{5}{6}\right) e(5360)e\left(\frac{53}{60}\right) i-i e(1415)e\left(\frac{14}{15}\right) e(1960)e\left(\frac{19}{60}\right)
χ1925(633,)\chi_{1925}(633,\cdot) 1-1 11 e(2360)e\left(\frac{23}{60}\right) e(512)e\left(\frac{5}{12}\right) e(2330)e\left(\frac{23}{30}\right) e(45)e\left(\frac{4}{5}\right) e(320)e\left(\frac{3}{20}\right) e(56)e\left(\frac{5}{6}\right) e(1160)e\left(\frac{11}{60}\right) ii e(815)e\left(\frac{8}{15}\right) e(1360)e\left(\frac{13}{60}\right)
χ1925(887,)\chi_{1925}(887,\cdot) 1-1 11 e(4960)e\left(\frac{49}{60}\right) e(712)e\left(\frac{7}{12}\right) e(1930)e\left(\frac{19}{30}\right) e(25)e\left(\frac{2}{5}\right) e(920)e\left(\frac{9}{20}\right) e(16)e\left(\frac{1}{6}\right) e(1360)e\left(\frac{13}{60}\right) i-i e(415)e\left(\frac{4}{15}\right) e(5960)e\left(\frac{59}{60}\right)
χ1925(908,)\chi_{1925}(908,\cdot) 1-1 11 e(4360)e\left(\frac{43}{60}\right) e(112)e\left(\frac{1}{12}\right) e(1330)e\left(\frac{13}{30}\right) e(45)e\left(\frac{4}{5}\right) e(320)e\left(\frac{3}{20}\right) e(16)e\left(\frac{1}{6}\right) e(3160)e\left(\frac{31}{60}\right) ii e(1315)e\left(\frac{13}{15}\right) e(5360)e\left(\frac{53}{60}\right)
χ1925(1613,)\chi_{1925}(1613,\cdot) 1-1 11 e(5960)e\left(\frac{59}{60}\right) e(512)e\left(\frac{5}{12}\right) e(2930)e\left(\frac{29}{30}\right) e(25)e\left(\frac{2}{5}\right) e(1920)e\left(\frac{19}{20}\right) e(56)e\left(\frac{5}{6}\right) e(2360)e\left(\frac{23}{60}\right) ii e(1415)e\left(\frac{14}{15}\right) e(4960)e\left(\frac{49}{60}\right)
χ1925(1823,)\chi_{1925}(1823,\cdot) 1-1 11 e(1160)e\left(\frac{11}{60}\right) e(512)e\left(\frac{5}{12}\right) e(1130)e\left(\frac{11}{30}\right) e(35)e\left(\frac{3}{5}\right) e(1120)e\left(\frac{11}{20}\right) e(56)e\left(\frac{5}{6}\right) e(4760)e\left(\frac{47}{60}\right) ii e(1115)e\left(\frac{11}{15}\right) e(160)e\left(\frac{1}{60}\right)
χ1925(1872,)\chi_{1925}(1872,\cdot) 1-1 11 e(1760)e\left(\frac{17}{60}\right) e(1112)e\left(\frac{11}{12}\right) e(1730)e\left(\frac{17}{30}\right) e(15)e\left(\frac{1}{5}\right) e(1720)e\left(\frac{17}{20}\right) e(56)e\left(\frac{5}{6}\right) e(2960)e\left(\frac{29}{60}\right) i-i e(215)e\left(\frac{2}{15}\right) e(760)e\left(\frac{7}{60}\right)
χ1925(1888,)\chi_{1925}(1888,\cdot) 1-1 11 e(1960)e\left(\frac{19}{60}\right) e(112)e\left(\frac{1}{12}\right) e(1930)e\left(\frac{19}{30}\right) e(25)e\left(\frac{2}{5}\right) e(1920)e\left(\frac{19}{20}\right) e(16)e\left(\frac{1}{6}\right) e(4360)e\left(\frac{43}{60}\right) ii e(415)e\left(\frac{4}{15}\right) e(2960)e\left(\frac{29}{60}\right)