Properties

Label 1925.r
Modulus 19251925
Conductor 275275
Order 55
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1925, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,0,8]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(36,1925))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 19251925
Conductor: 275275
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 55
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 275.k
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: 5.5.5719140625.2

Characters in Galois orbit

Character 1-1 11 22 33 44 66 88 99 1212 1313 1616 1717
χ1925(36,)\chi_{1925}(36,\cdot) 11 11 e(35)e\left(\frac{3}{5}\right) 11 e(15)e\left(\frac{1}{5}\right) e(35)e\left(\frac{3}{5}\right) e(45)e\left(\frac{4}{5}\right) 11 e(15)e\left(\frac{1}{5}\right) 11 e(25)e\left(\frac{2}{5}\right) e(35)e\left(\frac{3}{5}\right)
χ1925(456,)\chi_{1925}(456,\cdot) 11 11 e(45)e\left(\frac{4}{5}\right) 11 e(35)e\left(\frac{3}{5}\right) e(45)e\left(\frac{4}{5}\right) e(25)e\left(\frac{2}{5}\right) 11 e(35)e\left(\frac{3}{5}\right) 11 e(15)e\left(\frac{1}{5}\right) e(45)e\left(\frac{4}{5}\right)
χ1925(1016,)\chi_{1925}(1016,\cdot) 11 11 e(25)e\left(\frac{2}{5}\right) 11 e(45)e\left(\frac{4}{5}\right) e(25)e\left(\frac{2}{5}\right) e(15)e\left(\frac{1}{5}\right) 11 e(45)e\left(\frac{4}{5}\right) 11 e(35)e\left(\frac{3}{5}\right) e(25)e\left(\frac{2}{5}\right)
χ1925(1296,)\chi_{1925}(1296,\cdot) 11 11 e(15)e\left(\frac{1}{5}\right) 11 e(25)e\left(\frac{2}{5}\right) e(15)e\left(\frac{1}{5}\right) e(35)e\left(\frac{3}{5}\right) 11 e(25)e\left(\frac{2}{5}\right) 11 e(45)e\left(\frac{4}{5}\right) e(15)e\left(\frac{1}{5}\right)