Properties

Label 1936.be
Modulus $1936$
Conductor $968$
Order $22$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1936, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,11,21]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(87,1936))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1936\)
Conductor: \(968\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 968.w
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: 22.22.42765144951456754503592723360164151789017189226381312.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(13\) \(15\) \(17\) \(19\) \(21\) \(23\)
\(\chi_{1936}(87,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(1\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{7}{22}\right)\)
\(\chi_{1936}(263,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(1\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{21}{22}\right)\)
\(\chi_{1936}(439,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(1\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{13}{22}\right)\)
\(\chi_{1936}(615,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(1\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{5}{22}\right)\)
\(\chi_{1936}(791,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{7}{11}\right)\) \(1\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{19}{22}\right)\)
\(\chi_{1936}(1143,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(1\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{3}{22}\right)\)
\(\chi_{1936}(1319,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{8}{11}\right)\) \(1\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{17}{22}\right)\)
\(\chi_{1936}(1495,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{1}{11}\right)\) \(1\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{9}{22}\right)\)
\(\chi_{1936}(1671,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{5}{11}\right)\) \(1\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{1}{22}\right)\)
\(\chi_{1936}(1847,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(1\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{15}{22}\right)\)