from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(196, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,37]))
pari: [g,chi] = znchar(Mod(73,196))
Basic properties
Modulus: | \(196\) | |
Conductor: | \(49\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{49}(24,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 196.n
\(\chi_{196}(5,\cdot)\) \(\chi_{196}(17,\cdot)\) \(\chi_{196}(33,\cdot)\) \(\chi_{196}(45,\cdot)\) \(\chi_{196}(61,\cdot)\) \(\chi_{196}(73,\cdot)\) \(\chi_{196}(89,\cdot)\) \(\chi_{196}(101,\cdot)\) \(\chi_{196}(145,\cdot)\) \(\chi_{196}(157,\cdot)\) \(\chi_{196}(173,\cdot)\) \(\chi_{196}(185,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | Number field defined by a degree 42 polynomial |
Values on generators
\((99,101)\) → \((1,e\left(\frac{37}{42}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) |
\( \chi_{ 196 }(73, a) \) | \(-1\) | \(1\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)