Properties

Label 197.120
Modulus 197197
Conductor 197197
Order 2828
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(28))
 
M = H._module
 
chi = DirichletCharacter(H, M([11]))
 
pari: [g,chi] = znchar(Mod(120,197))
 

Basic properties

Modulus: 197197
Conductor: 197197
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2828
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 197.f

χ197(20,)\chi_{197}(20,\cdot) χ197(68,)\chi_{197}(68,\cdot) χ197(69,)\chi_{197}(69,\cdot) χ197(77,)\chi_{197}(77,\cdot) χ197(84,)\chi_{197}(84,\cdot) χ197(87,)\chi_{197}(87,\cdot) χ197(110,)\chi_{197}(110,\cdot) χ197(113,)\chi_{197}(113,\cdot) χ197(120,)\chi_{197}(120,\cdot) χ197(128,)\chi_{197}(128,\cdot) χ197(129,)\chi_{197}(129,\cdot) χ197(177,)\chi_{197}(177,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ28)\Q(\zeta_{28})
Fixed field: Number field defined by a degree 28 polynomial

Values on generators

22e(1128)e\left(\frac{11}{28}\right)

First values

aa 1-111223344556677889910101111
χ197(120,a) \chi_{ 197 }(120, a) 1-111e(1128)e\left(\frac{11}{28}\right)e(328)e\left(\frac{3}{28}\right)e(1114)e\left(\frac{11}{14}\right)e(2728)e\left(\frac{27}{28}\right)1-1e(514)e\left(\frac{5}{14}\right)e(528)e\left(\frac{5}{28}\right)e(314)e\left(\frac{3}{14}\right)e(514)e\left(\frac{5}{14}\right)e(1128)e\left(\frac{11}{28}\right)
sage: chi.jacobi_sum(n)
 
χ197(120,a)   \chi_{ 197 }(120,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ197(120,))   \tau_{ a }( \chi_{ 197 }(120,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ197(120,),χ197(n,))   J(\chi_{ 197 }(120,·),\chi_{ 197 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ197(120,))  K(a,b,\chi_{ 197 }(120,·)) \; at   a,b=\; a,b = e.g. 1,2