Properties

Label 197.120
Modulus $197$
Conductor $197$
Order $28$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(28))
 
M = H._module
 
chi = DirichletCharacter(H, M([11]))
 
pari: [g,chi] = znchar(Mod(120,197))
 

Basic properties

Modulus: \(197\)
Conductor: \(197\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 197.f

\(\chi_{197}(20,\cdot)\) \(\chi_{197}(68,\cdot)\) \(\chi_{197}(69,\cdot)\) \(\chi_{197}(77,\cdot)\) \(\chi_{197}(84,\cdot)\) \(\chi_{197}(87,\cdot)\) \(\chi_{197}(110,\cdot)\) \(\chi_{197}(113,\cdot)\) \(\chi_{197}(120,\cdot)\) \(\chi_{197}(128,\cdot)\) \(\chi_{197}(129,\cdot)\) \(\chi_{197}(177,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: Number field defined by a degree 28 polynomial

Values on generators

\(2\) → \(e\left(\frac{11}{28}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 197 }(120, a) \) \(-1\)\(1\)\(e\left(\frac{11}{28}\right)\)\(e\left(\frac{3}{28}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{27}{28}\right)\)\(-1\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{5}{28}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{11}{28}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 197 }(120,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 197 }(120,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 197 }(120,·),\chi_{ 197 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 197 }(120,·)) \;\) at \(\; a,b = \) e.g. 1,2