from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1980, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,50,45,36]))
pari: [g,chi] = znchar(Mod(383,1980))
Basic properties
Modulus: | \(1980\) | |
Conductor: | \(1980\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(60\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1980.dm
\(\chi_{1980}(47,\cdot)\) \(\chi_{1980}(203,\cdot)\) \(\chi_{1980}(383,\cdot)\) \(\chi_{1980}(443,\cdot)\) \(\chi_{1980}(587,\cdot)\) \(\chi_{1980}(707,\cdot)\) \(\chi_{1980}(983,\cdot)\) \(\chi_{1980}(1103,\cdot)\) \(\chi_{1980}(1127,\cdot)\) \(\chi_{1980}(1247,\cdot)\) \(\chi_{1980}(1307,\cdot)\) \(\chi_{1980}(1523,\cdot)\) \(\chi_{1980}(1643,\cdot)\) \(\chi_{1980}(1703,\cdot)\) \(\chi_{1980}(1787,\cdot)\) \(\chi_{1980}(1967,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{60})\) |
Fixed field: | Number field defined by a degree 60 polynomial |
Values on generators
\((991,1541,397,541)\) → \((-1,e\left(\frac{5}{6}\right),-i,e\left(\frac{3}{5}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 1980 }(383, a) \) | \(-1\) | \(1\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{12}\right)\) |
sage: chi.jacobi_sum(n)