Properties

Label 20.3
Modulus 2020
Conductor 2020
Order 44
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(20, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,3]))
 
pari: [g,chi] = znchar(Mod(3,20))
 

Basic properties

Modulus: 2020
Conductor: 2020
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 20.e

χ20(3,)\chi_{20}(3,\cdot) χ20(7,)\chi_{20}(7,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: Q(ζ20)+\Q(\zeta_{20})^+

Values on generators

(11,17)(11,17)(1,i)(-1,-i)

Values

aa 1-111337799111113131717
χ20(3,a) \chi_{ 20 }(3, a) 1111i-iii1-11-1iii-i
sage: chi.jacobi_sum(n)
 
χ20(3,a)   \chi_{ 20 }(3,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ20(3,))   \tau_{ a }( \chi_{ 20 }(3,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ20(3,),χ20(n,))   J(\chi_{ 20 }(3,·),\chi_{ 20 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ20(3,))  K(a,b,\chi_{ 20 }(3,·)) \; at   a,b=\; a,b = e.g. 1,2