Properties

Label 200.109
Modulus 200200
Conductor 200200
Order 1010
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,5,7]))
 
pari: [g,chi] = znchar(Mod(109,200))
 

Basic properties

Modulus: 200200
Conductor: 200200
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 200.o

χ200(29,)\chi_{200}(29,\cdot) χ200(69,)\chi_{200}(69,\cdot) χ200(109,)\chi_{200}(109,\cdot) χ200(189,)\chi_{200}(189,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: 10.10.25000000000000000.1

Values on generators

(151,101,177)(151,101,177)(1,1,e(710))(1,-1,e\left(\frac{7}{10}\right))

First values

aa 1-1113377991111131317171919212123232727
χ200(109,a) \chi_{ 200 }(109, a) 1111e(25)e\left(\frac{2}{5}\right)1-1e(45)e\left(\frac{4}{5}\right)e(710)e\left(\frac{7}{10}\right)e(45)e\left(\frac{4}{5}\right)e(110)e\left(\frac{1}{10}\right)e(110)e\left(\frac{1}{10}\right)e(910)e\left(\frac{9}{10}\right)e(710)e\left(\frac{7}{10}\right)e(15)e\left(\frac{1}{5}\right)
sage: chi.jacobi_sum(n)
 
χ200(109,a)   \chi_{ 200 }(109,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ200(109,))   \tau_{ a }( \chi_{ 200 }(109,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ200(109,),χ200(n,))   J(\chi_{ 200 }(109,·),\chi_{ 200 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ200(109,))  K(a,b,\chi_{ 200 }(109,·)) \; at   a,b=\; a,b = e.g. 1,2