Properties

Label 200.133
Modulus 200200
Conductor 200200
Order 2020
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,10,3]))
 
pari: [g,chi] = znchar(Mod(133,200))
 

Basic properties

Modulus: 200200
Conductor: 200200
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 200.x

χ200(13,)\chi_{200}(13,\cdot) χ200(37,)\chi_{200}(37,\cdot) χ200(53,)\chi_{200}(53,\cdot) χ200(77,)\chi_{200}(77,\cdot) χ200(117,)\chi_{200}(117,\cdot) χ200(133,)\chi_{200}(133,\cdot) χ200(173,)\chi_{200}(173,\cdot) χ200(197,)\chi_{200}(197,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: 20.0.3125000000000000000000000000000000.1

Values on generators

(151,101,177)(151,101,177)(1,1,e(320))(1,-1,e\left(\frac{3}{20}\right))

First values

aa 1-1113377991111131317171919212123232727
χ200(133,a) \chi_{ 200 }(133, a) 1-111e(1120)e\left(\frac{11}{20}\right)i-ie(110)e\left(\frac{1}{10}\right)e(910)e\left(\frac{9}{10}\right)e(720)e\left(\frac{7}{20}\right)e(1920)e\left(\frac{19}{20}\right)e(15)e\left(\frac{1}{5}\right)e(310)e\left(\frac{3}{10}\right)e(1320)e\left(\frac{13}{20}\right)e(1320)e\left(\frac{13}{20}\right)
sage: chi.jacobi_sum(n)
 
χ200(133,a)   \chi_{ 200 }(133,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ200(133,))   \tau_{ a }( \chi_{ 200 }(133,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ200(133,),χ200(n,))   J(\chi_{ 200 }(133,·),\chi_{ 200 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ200(133,))  K(a,b,\chi_{ 200 }(133,·)) \; at   a,b=\; a,b = e.g. 1,2