Properties

Label 200.47
Modulus 200200
Conductor 100100
Order 2020
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,0,17]))
 
pari: [g,chi] = znchar(Mod(47,200))
 

Basic properties

Modulus: 200200
Conductor: 100100
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ100(47,)\chi_{100}(47,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 200.w

χ200(23,)\chi_{200}(23,\cdot) χ200(47,)\chi_{200}(47,\cdot) χ200(63,)\chi_{200}(63,\cdot) χ200(87,)\chi_{200}(87,\cdot) χ200(103,)\chi_{200}(103,\cdot) χ200(127,)\chi_{200}(127,\cdot) χ200(167,)\chi_{200}(167,\cdot) χ200(183,)\chi_{200}(183,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: Q(ζ100)+\Q(\zeta_{100})^+

Values on generators

(151,101,177)(151,101,177)(1,1,e(1720))(-1,1,e\left(\frac{17}{20}\right))

First values

aa 1-1113377991111131317171919212123232727
χ200(47,a) \chi_{ 200 }(47, a) 1111e(920)e\left(\frac{9}{20}\right)i-ie(910)e\left(\frac{9}{10}\right)e(110)e\left(\frac{1}{10}\right)e(320)e\left(\frac{3}{20}\right)e(120)e\left(\frac{1}{20}\right)e(45)e\left(\frac{4}{5}\right)e(15)e\left(\frac{1}{5}\right)e(1720)e\left(\frac{17}{20}\right)e(720)e\left(\frac{7}{20}\right)
sage: chi.jacobi_sum(n)
 
χ200(47,a)   \chi_{ 200 }(47,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ200(47,))   \tau_{ a }( \chi_{ 200 }(47,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ200(47,),χ200(n,))   J(\chi_{ 200 }(47,·),\chi_{ 200 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ200(47,))  K(a,b,\chi_{ 200 }(47,·)) \; at   a,b=\; a,b = e.g. 1,2