Properties

Label 200.73
Modulus 200200
Conductor 2525
Order 2020
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,11]))
 
pari: [g,chi] = znchar(Mod(73,200))
 

Basic properties

Modulus: 200200
Conductor: 2525
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ25(23,)\chi_{25}(23,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 200.u

χ200(17,)\chi_{200}(17,\cdot) χ200(33,)\chi_{200}(33,\cdot) χ200(73,)\chi_{200}(73,\cdot) χ200(97,)\chi_{200}(97,\cdot) χ200(113,)\chi_{200}(113,\cdot) χ200(137,)\chi_{200}(137,\cdot) χ200(153,)\chi_{200}(153,\cdot) χ200(177,)\chi_{200}(177,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

(151,101,177)(151,101,177)(1,1,e(1120))(1,1,e\left(\frac{11}{20}\right))

First values

aa 1-1113377991111131317171919212123232727
χ200(73,a) \chi_{ 200 }(73, a) 1-111e(1720)e\left(\frac{17}{20}\right)i-ie(710)e\left(\frac{7}{10}\right)e(45)e\left(\frac{4}{5}\right)e(920)e\left(\frac{9}{20}\right)e(320)e\left(\frac{3}{20}\right)e(910)e\left(\frac{9}{10}\right)e(35)e\left(\frac{3}{5}\right)e(120)e\left(\frac{1}{20}\right)e(1120)e\left(\frac{11}{20}\right)
sage: chi.jacobi_sum(n)
 
χ200(73,a)   \chi_{ 200 }(73,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ200(73,))   \tau_{ a }( \chi_{ 200 }(73,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ200(73,),χ200(n,))   J(\chi_{ 200 }(73,·),\chi_{ 200 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ200(73,))  K(a,b,\chi_{ 200 }(73,·)) \; at   a,b=\; a,b = e.g. 1,2