from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2001, base_ring=CyclotomicField(154))
M = H._module
chi = DirichletCharacter(H, M([77,63,143]))
pari: [g,chi] = znchar(Mod(80,2001))
χ2001(5,⋅)
χ2001(38,⋅)
χ2001(80,⋅)
χ2001(122,⋅)
χ2001(125,⋅)
χ2001(149,⋅)
χ2001(158,⋅)
χ2001(212,⋅)
χ2001(245,⋅)
χ2001(296,⋅)
χ2001(332,⋅)
χ2001(341,⋅)
χ2001(383,⋅)
χ2001(410,⋅)
χ2001(419,⋅)
χ2001(428,⋅)
χ2001(470,⋅)
χ2001(497,⋅)
χ2001(527,⋅)
χ2001(557,⋅)
χ2001(701,⋅)
χ2001(734,⋅)
χ2001(776,⋅)
χ2001(845,⋅)
χ2001(908,⋅)
χ2001(941,⋅)
χ2001(950,⋅)
χ2001(962,⋅)
χ2001(1019,⋅)
χ2001(1049,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(668,1132,553) → (−1,e(229),e(1413))
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 13 | 14 | 16 |
χ2001(80,a) |
1 | 1 | e(7719) | e(7738) | e(7726) | e(154141) | e(7757) | e(7745) | e(15461) | e(7734) | e(15425) | e(7776) |