Properties

Label 201.38
Modulus 201201
Conductor 201201
Order 66
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(201, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([3,1]))
 
pari: [g,chi] = znchar(Mod(38,201))
 

Basic properties

Modulus: 201201
Conductor: 201201
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 201.f

χ201(38,)\chi_{201}(38,\cdot) χ201(164,)\chi_{201}(164,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.6.36453377889.1

Values on generators

(68,136)(68,136)(1,e(16))(-1,e\left(\frac{1}{6}\right))

First values

aa 1-111224455778810101111131314141616
χ201(38,a) \chi_{ 201 }(38, a) 1111e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)11e(56)e\left(\frac{5}{6}\right)11e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)e(16)e\left(\frac{1}{6}\right)1-1e(23)e\left(\frac{2}{3}\right)
sage: chi.jacobi_sum(n)
 
χ201(38,a)   \chi_{ 201 }(38,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ201(38,))   \tau_{ a }( \chi_{ 201 }(38,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ201(38,),χ201(n,))   J(\chi_{ 201 }(38,·),\chi_{ 201 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ201(38,))  K(a,b,\chi_{ 201 }(38,·)) \; at   a,b=\; a,b = e.g. 1,2