Properties

Label 201.50
Modulus 201201
Conductor 201201
Order 6666
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(201, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([33,31]))
 
pari: [g,chi] = znchar(Mod(50,201))
 

Basic properties

Modulus: 201201
Conductor: 201201
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 6666
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 201.p

χ201(2,)\chi_{201}(2,\cdot) χ201(11,)\chi_{201}(11,\cdot) χ201(20,)\chi_{201}(20,\cdot) χ201(32,)\chi_{201}(32,\cdot) χ201(41,)\chi_{201}(41,\cdot) χ201(44,)\chi_{201}(44,\cdot) χ201(50,)\chi_{201}(50,\cdot) χ201(74,)\chi_{201}(74,\cdot) χ201(80,)\chi_{201}(80,\cdot) χ201(95,)\chi_{201}(95,\cdot) χ201(98,)\chi_{201}(98,\cdot) χ201(101,)\chi_{201}(101,\cdot) χ201(113,)\chi_{201}(113,\cdot) χ201(128,)\chi_{201}(128,\cdot) χ201(146,)\chi_{201}(146,\cdot) χ201(152,)\chi_{201}(152,\cdot) χ201(182,)\chi_{201}(182,\cdot) χ201(185,)\chi_{201}(185,\cdot) χ201(191,)\chi_{201}(191,\cdot) χ201(197,)\chi_{201}(197,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ33)\Q(\zeta_{33})
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

(68,136)(68,136)(1,e(3166))(-1,e\left(\frac{31}{66}\right))

First values

aa 1-111224455778810101111131314141616
χ201(50,a) \chi_{ 201 }(50, a) 1111e(3233)e\left(\frac{32}{33}\right)e(3133)e\left(\frac{31}{33}\right)e(611)e\left(\frac{6}{11}\right)e(5366)e\left(\frac{53}{66}\right)e(1011)e\left(\frac{10}{11}\right)e(1733)e\left(\frac{17}{33}\right)e(733)e\left(\frac{7}{33}\right)e(6166)e\left(\frac{61}{66}\right)e(1722)e\left(\frac{17}{22}\right)e(2933)e\left(\frac{29}{33}\right)
sage: chi.jacobi_sum(n)
 
χ201(50,a)   \chi_{ 201 }(50,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ201(50,))   \tau_{ a }( \chi_{ 201 }(50,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ201(50,),χ201(n,))   J(\chi_{ 201 }(50,·),\chi_{ 201 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ201(50,))  K(a,b,\chi_{ 201 }(50,·)) \; at   a,b=\; a,b = e.g. 1,2