Properties

Label 2016.797
Modulus 20162016
Conductor 20162016
Order 2424
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2016, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,20,12]))
 
pari: [g,chi] = znchar(Mod(797,2016))
 

Basic properties

Modulus: 20162016
Conductor: 20162016
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2424
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2016.fb

χ2016(293,)\chi_{2016}(293,\cdot) χ2016(461,)\chi_{2016}(461,\cdot) χ2016(797,)\chi_{2016}(797,\cdot) χ2016(965,)\chi_{2016}(965,\cdot) χ2016(1301,)\chi_{2016}(1301,\cdot) χ2016(1469,)\chi_{2016}(1469,\cdot) χ2016(1805,)\chi_{2016}(1805,\cdot) χ2016(1973,)\chi_{2016}(1973,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ24)\Q(\zeta_{24})
Fixed field: 24.24.20574592712627357116606755731219706996406776278896607232.1

Values on generators

(127,1765,1793,577)(127,1765,1793,577)(1,e(38),e(56),1)(1,e\left(\frac{3}{8}\right),e\left(\frac{5}{6}\right),-1)

First values

aa 1-11155111113131717191923232525292931313737
χ2016(797,a) \chi_{ 2016 }(797, a) 1111e(124)e\left(\frac{1}{24}\right)e(1724)e\left(\frac{17}{24}\right)e(1924)e\left(\frac{19}{24}\right)1-1e(18)e\left(\frac{1}{8}\right)e(512)e\left(\frac{5}{12}\right)e(112)e\left(\frac{1}{12}\right)e(2324)e\left(\frac{23}{24}\right)e(16)e\left(\frac{1}{6}\right)e(38)e\left(\frac{3}{8}\right)
sage: chi.jacobi_sum(n)
 
χ2016(797,a)   \chi_{ 2016 }(797,a) \; at   a=\;a = e.g. 2