from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2016, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,9,20,12]))
pari: [g,chi] = znchar(Mod(797,2016))
Basic properties
Modulus: | \(2016\) | |
Conductor: | \(2016\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(24\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2016.fb
\(\chi_{2016}(293,\cdot)\) \(\chi_{2016}(461,\cdot)\) \(\chi_{2016}(797,\cdot)\) \(\chi_{2016}(965,\cdot)\) \(\chi_{2016}(1301,\cdot)\) \(\chi_{2016}(1469,\cdot)\) \(\chi_{2016}(1805,\cdot)\) \(\chi_{2016}(1973,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{24})\) |
Fixed field: | 24.24.20574592712627357116606755731219706996406776278896607232.1 |
Values on generators
\((127,1765,1793,577)\) → \((1,e\left(\frac{3}{8}\right),e\left(\frac{5}{6}\right),-1)\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 2016 }(797, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{3}{8}\right)\) |
sage: chi.jacobi_sum(n)