Properties

Label 2023.2022
Modulus $2023$
Conductor $119$
Order $2$
Real yes
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2023, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,1]))
 
pari: [g,chi] = znchar(Mod(2022,2023))
 

Basic properties

Modulus: \(2023\)
Conductor: \(119\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{119}(118,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2023.d

\(\chi_{2023}(2022,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{-119}) \)

Values on generators

\((290,1737)\) → \((-1,-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 2023 }(2022, a) \) \(-1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(-1\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2023 }(2022,a) \;\) at \(\;a = \) e.g. 2