Properties

Label 2028.1133
Modulus $2028$
Conductor $507$
Order $156$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2028, base_ring=CyclotomicField(156))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,78,97]))
 
pari: [g,chi] = znchar(Mod(1133,2028))
 

Basic properties

Modulus: \(2028\)
Conductor: \(507\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(156\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{507}(119,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2028.bu

\(\chi_{2028}(41,\cdot)\) \(\chi_{2028}(137,\cdot)\) \(\chi_{2028}(149,\cdot)\) \(\chi_{2028}(197,\cdot)\) \(\chi_{2028}(245,\cdot)\) \(\chi_{2028}(293,\cdot)\) \(\chi_{2028}(305,\cdot)\) \(\chi_{2028}(353,\cdot)\) \(\chi_{2028}(401,\cdot)\) \(\chi_{2028}(449,\cdot)\) \(\chi_{2028}(461,\cdot)\) \(\chi_{2028}(509,\cdot)\) \(\chi_{2028}(557,\cdot)\) \(\chi_{2028}(605,\cdot)\) \(\chi_{2028}(617,\cdot)\) \(\chi_{2028}(665,\cdot)\) \(\chi_{2028}(713,\cdot)\) \(\chi_{2028}(761,\cdot)\) \(\chi_{2028}(773,\cdot)\) \(\chi_{2028}(821,\cdot)\) \(\chi_{2028}(869,\cdot)\) \(\chi_{2028}(917,\cdot)\) \(\chi_{2028}(929,\cdot)\) \(\chi_{2028}(977,\cdot)\) \(\chi_{2028}(1025,\cdot)\) \(\chi_{2028}(1073,\cdot)\) \(\chi_{2028}(1085,\cdot)\) \(\chi_{2028}(1133,\cdot)\) \(\chi_{2028}(1181,\cdot)\) \(\chi_{2028}(1229,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((1015,677,1861)\) → \((1,-1,e\left(\frac{97}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 2028 }(1133, a) \) \(1\)\(1\)\(e\left(\frac{5}{52}\right)\)\(e\left(\frac{83}{156}\right)\)\(e\left(\frac{85}{156}\right)\)\(e\left(\frac{11}{39}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{26}\right)\)\(e\left(\frac{29}{78}\right)\)\(e\left(\frac{3}{52}\right)\)\(e\left(\frac{49}{78}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2028 }(1133,a) \;\) at \(\;a = \) e.g. 2