sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2028, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([0,26,23]))
pari:[g,chi] = znchar(Mod(473,2028))
χ2028(5,⋅)
χ2028(125,⋅)
χ2028(161,⋅)
χ2028(281,⋅)
χ2028(317,⋅)
χ2028(473,⋅)
χ2028(593,⋅)
χ2028(629,⋅)
χ2028(749,⋅)
χ2028(785,⋅)
χ2028(905,⋅)
χ2028(941,⋅)
χ2028(1061,⋅)
χ2028(1097,⋅)
χ2028(1217,⋅)
χ2028(1373,⋅)
χ2028(1409,⋅)
χ2028(1529,⋅)
χ2028(1565,⋅)
χ2028(1685,⋅)
χ2028(1721,⋅)
χ2028(1841,⋅)
χ2028(1877,⋅)
χ2028(1997,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1015,677,1861) → (1,−1,e(5223))
a |
−1 | 1 | 5 | 7 | 11 | 17 | 19 | 23 | 25 | 29 | 31 | 35 |
χ2028(473,a) |
1 | 1 | e(5225) | e(5217) | e(523) | e(131) | −i | 1 | e(2625) | e(265) | e(5215) | e(2621) |
sage:chi.jacobi_sum(n)