Properties

Label 2028.473
Modulus $2028$
Conductor $507$
Order $52$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2028, base_ring=CyclotomicField(52))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,26,23]))
 
pari: [g,chi] = znchar(Mod(473,2028))
 

Basic properties

Modulus: \(2028\)
Conductor: \(507\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(52\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{507}(473,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2028.bi

\(\chi_{2028}(5,\cdot)\) \(\chi_{2028}(125,\cdot)\) \(\chi_{2028}(161,\cdot)\) \(\chi_{2028}(281,\cdot)\) \(\chi_{2028}(317,\cdot)\) \(\chi_{2028}(473,\cdot)\) \(\chi_{2028}(593,\cdot)\) \(\chi_{2028}(629,\cdot)\) \(\chi_{2028}(749,\cdot)\) \(\chi_{2028}(785,\cdot)\) \(\chi_{2028}(905,\cdot)\) \(\chi_{2028}(941,\cdot)\) \(\chi_{2028}(1061,\cdot)\) \(\chi_{2028}(1097,\cdot)\) \(\chi_{2028}(1217,\cdot)\) \(\chi_{2028}(1373,\cdot)\) \(\chi_{2028}(1409,\cdot)\) \(\chi_{2028}(1529,\cdot)\) \(\chi_{2028}(1565,\cdot)\) \(\chi_{2028}(1685,\cdot)\) \(\chi_{2028}(1721,\cdot)\) \(\chi_{2028}(1841,\cdot)\) \(\chi_{2028}(1877,\cdot)\) \(\chi_{2028}(1997,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{52})$
Fixed field: Number field defined by a degree 52 polynomial

Values on generators

\((1015,677,1861)\) → \((1,-1,e\left(\frac{23}{52}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 2028 }(473, a) \) \(1\)\(1\)\(e\left(\frac{25}{52}\right)\)\(e\left(\frac{17}{52}\right)\)\(e\left(\frac{3}{52}\right)\)\(e\left(\frac{1}{13}\right)\)\(-i\)\(1\)\(e\left(\frac{25}{26}\right)\)\(e\left(\frac{5}{26}\right)\)\(e\left(\frac{15}{52}\right)\)\(e\left(\frac{21}{26}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2028 }(473,a) \;\) at \(\;a = \) e.g. 2