sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(203, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([0,12]))
pari:[g,chi] = znchar(Mod(78,203))
χ203(36,⋅)
χ203(78,⋅)
χ203(141,⋅)
χ203(169,⋅)
χ203(190,⋅)
χ203(197,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(59,176) → (1,e(76))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 |
χ203(78,a) |
1 | 1 | e(76) | e(72) | e(75) | e(76) | e(71) | e(74) | e(74) | e(75) | e(73) | 1 |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)