Properties

Label 2070.361
Modulus $2070$
Conductor $23$
Order $11$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2070, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,8]))
 
pari: [g,chi] = znchar(Mod(361,2070))
 

Basic properties

Modulus: \(2070\)
Conductor: \(23\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(11\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{23}(16,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2070.u

\(\chi_{2070}(271,\cdot)\) \(\chi_{2070}(361,\cdot)\) \(\chi_{2070}(541,\cdot)\) \(\chi_{2070}(721,\cdot)\) \(\chi_{2070}(811,\cdot)\) \(\chi_{2070}(901,\cdot)\) \(\chi_{2070}(991,\cdot)\) \(\chi_{2070}(1531,\cdot)\) \(\chi_{2070}(1711,\cdot)\) \(\chi_{2070}(1981,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: \(\Q(\zeta_{23})^+\)

Values on generators

\((461,1657,1891)\) → \((1,1,e\left(\frac{4}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 2070 }(361, a) \) \(1\)\(1\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{9}{11}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2070 }(361,a) \;\) at \(\;a = \) e.g. 2