from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2070, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([0,0,8]))
pari: [g,chi] = znchar(Mod(361,2070))
Basic properties
Modulus: | \(2070\) | |
Conductor: | \(23\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(11\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{23}(16,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2070.u
\(\chi_{2070}(271,\cdot)\) \(\chi_{2070}(361,\cdot)\) \(\chi_{2070}(541,\cdot)\) \(\chi_{2070}(721,\cdot)\) \(\chi_{2070}(811,\cdot)\) \(\chi_{2070}(901,\cdot)\) \(\chi_{2070}(991,\cdot)\) \(\chi_{2070}(1531,\cdot)\) \(\chi_{2070}(1711,\cdot)\) \(\chi_{2070}(1981,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{11})\) |
Fixed field: | \(\Q(\zeta_{23})^+\) |
Values on generators
\((461,1657,1891)\) → \((1,1,e\left(\frac{4}{11}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 2070 }(361, a) \) | \(1\) | \(1\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) |
sage: chi.jacobi_sum(n)