Properties

Label 2070.361
Modulus 20702070
Conductor 2323
Order 1111
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2070, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,8]))
 
pari: [g,chi] = znchar(Mod(361,2070))
 

Basic properties

Modulus: 20702070
Conductor: 2323
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1111
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ23(16,)\chi_{23}(16,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2070.u

χ2070(271,)\chi_{2070}(271,\cdot) χ2070(361,)\chi_{2070}(361,\cdot) χ2070(541,)\chi_{2070}(541,\cdot) χ2070(721,)\chi_{2070}(721,\cdot) χ2070(811,)\chi_{2070}(811,\cdot) χ2070(901,)\chi_{2070}(901,\cdot) χ2070(991,)\chi_{2070}(991,\cdot) χ2070(1531,)\chi_{2070}(1531,\cdot) χ2070(1711,)\chi_{2070}(1711,\cdot) χ2070(1981,)\chi_{2070}(1981,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ11)\Q(\zeta_{11})
Fixed field: Q(ζ23)+\Q(\zeta_{23})^+

Values on generators

(461,1657,1891)(461,1657,1891)(1,1,e(411))(1,1,e\left(\frac{4}{11}\right))

First values

aa 1-11177111113131717191929293131373741414343
χ2070(361,a) \chi_{ 2070 }(361, a) 1111e(1011)e\left(\frac{10}{11}\right)e(311)e\left(\frac{3}{11}\right)e(111)e\left(\frac{1}{11}\right)e(611)e\left(\frac{6}{11}\right)e(511)e\left(\frac{5}{11}\right)e(611)e\left(\frac{6}{11}\right)e(211)e\left(\frac{2}{11}\right)e(711)e\left(\frac{7}{11}\right)e(411)e\left(\frac{4}{11}\right)e(911)e\left(\frac{9}{11}\right)
sage: chi.jacobi_sum(n)
 
χ2070(361,a)   \chi_{ 2070 }(361,a) \; at   a=\;a = e.g. 2