Properties

Label 208.81
Modulus $208$
Conductor $13$
Order $3$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,2]))
 
pari: [g,chi] = znchar(Mod(81,208))
 

Basic properties

Modulus: \(208\)
Conductor: \(13\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(3\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{13}(3,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 208.i

\(\chi_{208}(81,\cdot)\) \(\chi_{208}(113,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(\zeta_3)\)
Fixed field: 3.3.169.1

Values on generators

\((79,53,145)\) → \((1,1,e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 208 }(81, a) \) \(1\)\(1\)\(e\left(\frac{1}{3}\right)\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(1\)\(e\left(\frac{1}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 208 }(81,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 208 }(81,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 208 }(81,·),\chi_{ 208 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 208 }(81,·)) \;\) at \(\; a,b = \) e.g. 1,2