sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(209, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([81,80]))
pari:[g,chi] = znchar(Mod(138,209))
Modulus: | 209 | |
Conductor: | 209 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 90 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ209(6,⋅)
χ209(17,⋅)
χ209(24,⋅)
χ209(28,⋅)
χ209(35,⋅)
χ209(61,⋅)
χ209(62,⋅)
χ209(63,⋅)
χ209(73,⋅)
χ209(74,⋅)
χ209(85,⋅)
χ209(101,⋅)
χ209(112,⋅)
χ209(118,⋅)
χ209(123,⋅)
χ209(138,⋅)
χ209(139,⋅)
χ209(149,⋅)
χ209(150,⋅)
χ209(156,⋅)
χ209(161,⋅)
χ209(194,⋅)
χ209(195,⋅)
χ209(206,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(134,78) → (e(109),e(98))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 |
χ209(138,a) |
−1 | 1 | e(9071) | e(4534) | e(4526) | e(4537) | e(9049) | e(3019) | e(3011) | e(4523) | e(1811) | e(31) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)