Properties

Label 209.138
Modulus 209209
Conductor 209209
Order 9090
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(209, base_ring=CyclotomicField(90)) M = H._module chi = DirichletCharacter(H, M([81,80]))
 
Copy content pari:[g,chi] = znchar(Mod(138,209))
 

Basic properties

Modulus: 209209
Conductor: 209209
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 9090
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 209.v

χ209(6,)\chi_{209}(6,\cdot) χ209(17,)\chi_{209}(17,\cdot) χ209(24,)\chi_{209}(24,\cdot) χ209(28,)\chi_{209}(28,\cdot) χ209(35,)\chi_{209}(35,\cdot) χ209(61,)\chi_{209}(61,\cdot) χ209(62,)\chi_{209}(62,\cdot) χ209(63,)\chi_{209}(63,\cdot) χ209(73,)\chi_{209}(73,\cdot) χ209(74,)\chi_{209}(74,\cdot) χ209(85,)\chi_{209}(85,\cdot) χ209(101,)\chi_{209}(101,\cdot) χ209(112,)\chi_{209}(112,\cdot) χ209(118,)\chi_{209}(118,\cdot) χ209(123,)\chi_{209}(123,\cdot) χ209(138,)\chi_{209}(138,\cdot) χ209(139,)\chi_{209}(139,\cdot) χ209(149,)\chi_{209}(149,\cdot) χ209(150,)\chi_{209}(150,\cdot) χ209(156,)\chi_{209}(156,\cdot) χ209(161,)\chi_{209}(161,\cdot) χ209(194,)\chi_{209}(194,\cdot) χ209(195,)\chi_{209}(195,\cdot) χ209(206,)\chi_{209}(206,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ45)\Q(\zeta_{45})
Fixed field: Number field defined by a degree 90 polynomial

Values on generators

(134,78)(134,78)(e(910),e(89))(e\left(\frac{9}{10}\right),e\left(\frac{8}{9}\right))

First values

aa 1-111223344556677889910101212
χ209(138,a) \chi_{ 209 }(138, a) 1-111e(7190)e\left(\frac{71}{90}\right)e(3445)e\left(\frac{34}{45}\right)e(2645)e\left(\frac{26}{45}\right)e(3745)e\left(\frac{37}{45}\right)e(4990)e\left(\frac{49}{90}\right)e(1930)e\left(\frac{19}{30}\right)e(1130)e\left(\frac{11}{30}\right)e(2345)e\left(\frac{23}{45}\right)e(1118)e\left(\frac{11}{18}\right)e(13)e\left(\frac{1}{3}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ209(138,a)   \chi_{ 209 }(138,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ209(138,))   \tau_{ a }( \chi_{ 209 }(138,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ209(138,),χ209(n,))   J(\chi_{ 209 }(138,·),\chi_{ 209 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ209(138,))  K(a,b,\chi_{ 209 }(138,·)) \; at   a,b=\; a,b = e.g. 1,2