Properties

Label 2100.1109
Modulus 21002100
Conductor 525525
Order 3030
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,15,21,5]))
 
pari: [g,chi] = znchar(Mod(1109,2100))
 

Basic properties

Modulus: 21002100
Conductor: 525525
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3030
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ525(59,)\chi_{525}(59,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2100.cv

χ2100(89,)\chi_{2100}(89,\cdot) χ2100(269,)\chi_{2100}(269,\cdot) χ2100(509,)\chi_{2100}(509,\cdot) χ2100(689,)\chi_{2100}(689,\cdot) χ2100(929,)\chi_{2100}(929,\cdot) χ2100(1109,)\chi_{2100}(1109,\cdot) χ2100(1529,)\chi_{2100}(1529,\cdot) χ2100(1769,)\chi_{2100}(1769,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ15)\Q(\zeta_{15})
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

(1051,701,1177,1501)(1051,701,1177,1501)(1,1,e(710),e(16))(1,-1,e\left(\frac{7}{10}\right),e\left(\frac{1}{6}\right))

First values

aa 1-1111111131317171919232329293131373741414343
χ2100(1109,a) \chi_{ 2100 }(1109, a) 1111e(1130)e\left(\frac{11}{30}\right)e(45)e\left(\frac{4}{5}\right)e(2330)e\left(\frac{23}{30}\right)e(1330)e\left(\frac{13}{30}\right)e(815)e\left(\frac{8}{15}\right)e(910)e\left(\frac{9}{10}\right)e(2330)e\left(\frac{23}{30}\right)e(1930)e\left(\frac{19}{30}\right)e(45)e\left(\frac{4}{5}\right)1-1
sage: chi.jacobi_sum(n)
 
χ2100(1109,a)   \chi_{ 2100 }(1109,a) \; at   a=\;a = e.g. 2