Properties

Label 2100.2057
Modulus 21002100
Conductor 105105
Order 44
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,2,1,2]))
 
pari: [g,chi] = znchar(Mod(2057,2100))
 

Basic properties

Modulus: 21002100
Conductor: 105105
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ105(62,)\chi_{105}(62,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2100.u

χ2100(293,)\chi_{2100}(293,\cdot) χ2100(2057,)\chi_{2100}(2057,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.0.55125.1

Values on generators

(1051,701,1177,1501)(1051,701,1177,1501)(1,1,i,1)(1,-1,i,-1)

First values

aa 1-1111111131317171919232329293131373741414343
χ2100(2057,a) \chi_{ 2100 }(2057, a) 1-1111-1iiii11ii111-1ii11i-i
sage: chi.jacobi_sum(n)
 
χ2100(2057,a)   \chi_{ 2100 }(2057,a) \; at   a=\;a = e.g. 2