Properties

Label 2128.1059
Modulus $2128$
Conductor $2128$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2128, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,27,12,14]))
 
pari: [g,chi] = znchar(Mod(1059,2128))
 

Basic properties

Modulus: \(2128\)
Conductor: \(2128\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2128.gt

\(\chi_{2128}(67,\cdot)\) \(\chi_{2128}(611,\cdot)\) \(\chi_{2128}(667,\cdot)\) \(\chi_{2128}(851,\cdot)\) \(\chi_{2128}(963,\cdot)\) \(\chi_{2128}(1059,\cdot)\) \(\chi_{2128}(1131,\cdot)\) \(\chi_{2128}(1675,\cdot)\) \(\chi_{2128}(1731,\cdot)\) \(\chi_{2128}(1915,\cdot)\) \(\chi_{2128}(2027,\cdot)\) \(\chi_{2128}(2123,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

\((799,533,913,1009)\) → \((-1,-i,e\left(\frac{1}{3}\right),e\left(\frac{7}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 2128 }(1059, a) \) \(1\)\(1\)\(e\left(\frac{5}{36}\right)\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{5}{18}\right)\)\(i\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{5}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2128 }(1059,a) \;\) at \(\;a = \) e.g. 2