Properties

Label 2135.1168
Modulus 21352135
Conductor 21352135
Order 2020
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2135, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,10,4]))
 
pari: [g,chi] = znchar(Mod(1168,2135))
 

Basic properties

Modulus: 21352135
Conductor: 21352135
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2135.ep

χ2135(363,)\chi_{2135}(363,\cdot) χ2135(447,)\chi_{2135}(447,\cdot) χ2135(888,)\chi_{2135}(888,\cdot) χ2135(1168,)\chi_{2135}(1168,\cdot) χ2135(1217,)\chi_{2135}(1217,\cdot) χ2135(1728,)\chi_{2135}(1728,\cdot) χ2135(1742,)\chi_{2135}(1742,\cdot) χ2135(2022,)\chi_{2135}(2022,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

(1282,1221,246)(1282,1221,246)(i,1,e(15))(-i,-1,e\left(\frac{1}{5}\right))

First values

aa 1-1112233446688991111121213131616
χ2135(1168,a) \chi_{ 2135 }(1168, a) 1111e(1920)e\left(\frac{19}{20}\right)e(1920)e\left(\frac{19}{20}\right)e(910)e\left(\frac{9}{10}\right)e(910)e\left(\frac{9}{10}\right)e(1720)e\left(\frac{17}{20}\right)e(910)e\left(\frac{9}{10}\right)11e(1720)e\left(\frac{17}{20}\right)i-ie(45)e\left(\frac{4}{5}\right)
sage: chi.jacobi_sum(n)
 
χ2135(1168,a)   \chi_{ 2135 }(1168,a) \; at   a=\;a = e.g. 2