Properties

Label 2135.39
Modulus 21352135
Conductor 21352135
Order 3030
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2135, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,20,23]))
 
pari: [g,chi] = znchar(Mod(39,2135))
 

Basic properties

Modulus: 21352135
Conductor: 21352135
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3030
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2135.ev

χ2135(39,)\chi_{2135}(39,\cdot) χ2135(219,)\chi_{2135}(219,\cdot) χ2135(249,)\chi_{2135}(249,\cdot) χ2135(324,)\chi_{2135}(324,\cdot) χ2135(919,)\chi_{2135}(919,\cdot) χ2135(1269,)\chi_{2135}(1269,\cdot) χ2135(1509,)\chi_{2135}(1509,\cdot) χ2135(1754,)\chi_{2135}(1754,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ15)\Q(\zeta_{15})
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

(1282,1221,246)(1282,1221,246)(1,e(23),e(2330))(-1,e\left(\frac{2}{3}\right),e\left(\frac{23}{30}\right))

First values

aa 1-1112233446688991111121213131616
χ2135(39,a) \chi_{ 2135 }(39, a) 1111e(35)e\left(\frac{3}{5}\right)e(2330)e\left(\frac{23}{30}\right)e(15)e\left(\frac{1}{5}\right)e(1130)e\left(\frac{11}{30}\right)e(45)e\left(\frac{4}{5}\right)e(815)e\left(\frac{8}{15}\right)e(16)e\left(\frac{1}{6}\right)e(2930)e\left(\frac{29}{30}\right)e(16)e\left(\frac{1}{6}\right)e(25)e\left(\frac{2}{5}\right)
sage: chi.jacobi_sum(n)
 
χ2135(39,a)   \chi_{ 2135 }(39,a) \; at   a=\;a = e.g. 2