Properties

Label 215.11
Modulus 215215
Conductor 4343
Order 77
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(215, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,10]))
 
pari: [g,chi] = znchar(Mod(11,215))
 

Basic properties

Modulus: 215215
Conductor: 4343
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 77
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ43(11,)\chi_{43}(11,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 215.k

χ215(11,)\chi_{215}(11,\cdot) χ215(16,)\chi_{215}(16,\cdot) χ215(21,)\chi_{215}(21,\cdot) χ215(41,)\chi_{215}(41,\cdot) χ215(121,)\chi_{215}(121,\cdot) χ215(176,)\chi_{215}(176,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ7)\Q(\zeta_{7})
Fixed field: 7.7.6321363049.1

Values on generators

(87,46)(87,46)(1,e(57))(1,e\left(\frac{5}{7}\right))

First values

aa 1-11122334466778899111112121313
χ215(11,a) \chi_{ 215 }(11, a) 1111e(27)e\left(\frac{2}{7}\right)e(57)e\left(\frac{5}{7}\right)e(47)e\left(\frac{4}{7}\right)1111e(67)e\left(\frac{6}{7}\right)e(37)e\left(\frac{3}{7}\right)e(37)e\left(\frac{3}{7}\right)e(27)e\left(\frac{2}{7}\right)e(67)e\left(\frac{6}{7}\right)
sage: chi.jacobi_sum(n)
 
χ215(11,a)   \chi_{ 215 }(11,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ215(11,))   \tau_{ a }( \chi_{ 215 }(11,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ215(11,),χ215(n,))   J(\chi_{ 215 }(11,·),\chi_{ 215 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ215(11,))  K(a,b,\chi_{ 215 }(11,·)) \; at   a,b=\; a,b = e.g. 1,2