sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2156, base_ring=CyclotomicField(70))
M = H._module
chi = DirichletCharacter(H, M([0,30,21]))
pari:[g,chi] = znchar(Mod(1009,2156))
χ2156(29,⋅)
χ2156(57,⋅)
χ2156(85,⋅)
χ2156(281,⋅)
χ2156(337,⋅)
χ2156(365,⋅)
χ2156(645,⋅)
χ2156(673,⋅)
χ2156(701,⋅)
χ2156(897,⋅)
χ2156(953,⋅)
χ2156(1009,⋅)
χ2156(1205,⋅)
χ2156(1261,⋅)
χ2156(1289,⋅)
χ2156(1317,⋅)
χ2156(1513,⋅)
χ2156(1597,⋅)
χ2156(1625,⋅)
χ2156(1821,⋅)
χ2156(1877,⋅)
χ2156(1905,⋅)
χ2156(1933,⋅)
χ2156(2129,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1079,1277,981) → (1,e(73),e(103))
a |
−1 | 1 | 3 | 5 | 9 | 13 | 15 | 17 | 19 | 23 | 25 | 27 |
χ2156(1009,a) |
−1 | 1 | e(3529) | e(3522) | e(3523) | e(7031) | e(3516) | e(7029) | e(109) | e(72) | e(359) | e(3517) |
sage:chi.jacobi_sum(n)