Properties

Label 2156.1009
Modulus $2156$
Conductor $539$
Order $70$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(70))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,30,21]))
 
pari: [g,chi] = znchar(Mod(1009,2156))
 

Basic properties

Modulus: \(2156\)
Conductor: \(539\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(70\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{539}(470,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2156.cd

\(\chi_{2156}(29,\cdot)\) \(\chi_{2156}(57,\cdot)\) \(\chi_{2156}(85,\cdot)\) \(\chi_{2156}(281,\cdot)\) \(\chi_{2156}(337,\cdot)\) \(\chi_{2156}(365,\cdot)\) \(\chi_{2156}(645,\cdot)\) \(\chi_{2156}(673,\cdot)\) \(\chi_{2156}(701,\cdot)\) \(\chi_{2156}(897,\cdot)\) \(\chi_{2156}(953,\cdot)\) \(\chi_{2156}(1009,\cdot)\) \(\chi_{2156}(1205,\cdot)\) \(\chi_{2156}(1261,\cdot)\) \(\chi_{2156}(1289,\cdot)\) \(\chi_{2156}(1317,\cdot)\) \(\chi_{2156}(1513,\cdot)\) \(\chi_{2156}(1597,\cdot)\) \(\chi_{2156}(1625,\cdot)\) \(\chi_{2156}(1821,\cdot)\) \(\chi_{2156}(1877,\cdot)\) \(\chi_{2156}(1905,\cdot)\) \(\chi_{2156}(1933,\cdot)\) \(\chi_{2156}(2129,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{35})$
Fixed field: Number field defined by a degree 70 polynomial

Values on generators

\((1079,1277,981)\) → \((1,e\left(\frac{3}{7}\right),e\left(\frac{3}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2156 }(1009, a) \) \(-1\)\(1\)\(e\left(\frac{29}{35}\right)\)\(e\left(\frac{22}{35}\right)\)\(e\left(\frac{23}{35}\right)\)\(e\left(\frac{31}{70}\right)\)\(e\left(\frac{16}{35}\right)\)\(e\left(\frac{29}{70}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{9}{35}\right)\)\(e\left(\frac{17}{35}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2156 }(1009,a) \;\) at \(\;a = \) e.g. 2