Properties

Label 2156.1179
Modulus $2156$
Conductor $2156$
Order $210$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(210))
 
M = H._module
 
chi = DirichletCharacter(H, M([105,5,21]))
 
pari: [g,chi] = znchar(Mod(1179,2156))
 

Basic properties

Modulus: \(2156\)
Conductor: \(2156\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(210\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2156.ch

\(\chi_{2156}(171,\cdot)\) \(\chi_{2156}(255,\cdot)\) \(\chi_{2156}(271,\cdot)\) \(\chi_{2156}(283,\cdot)\) \(\chi_{2156}(299,\cdot)\) \(\chi_{2156}(327,\cdot)\) \(\chi_{2156}(479,\cdot)\) \(\chi_{2156}(523,\cdot)\) \(\chi_{2156}(535,\cdot)\) \(\chi_{2156}(563,\cdot)\) \(\chi_{2156}(579,\cdot)\) \(\chi_{2156}(591,\cdot)\) \(\chi_{2156}(635,\cdot)\) \(\chi_{2156}(787,\cdot)\) \(\chi_{2156}(831,\cdot)\) \(\chi_{2156}(843,\cdot)\) \(\chi_{2156}(871,\cdot)\) \(\chi_{2156}(887,\cdot)\) \(\chi_{2156}(899,\cdot)\) \(\chi_{2156}(915,\cdot)\) \(\chi_{2156}(943,\cdot)\) \(\chi_{2156}(1095,\cdot)\) \(\chi_{2156}(1139,\cdot)\) \(\chi_{2156}(1151,\cdot)\) \(\chi_{2156}(1179,\cdot)\) \(\chi_{2156}(1223,\cdot)\) \(\chi_{2156}(1251,\cdot)\) \(\chi_{2156}(1447,\cdot)\) \(\chi_{2156}(1459,\cdot)\) \(\chi_{2156}(1487,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((1079,1277,981)\) → \((-1,e\left(\frac{1}{42}\right),e\left(\frac{1}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2156 }(1179, a) \) \(-1\)\(1\)\(e\left(\frac{34}{105}\right)\)\(e\left(\frac{19}{210}\right)\)\(e\left(\frac{68}{105}\right)\)\(e\left(\frac{31}{35}\right)\)\(e\left(\frac{29}{70}\right)\)\(e\left(\frac{52}{105}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{17}{42}\right)\)\(e\left(\frac{19}{105}\right)\)\(e\left(\frac{34}{35}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2156 }(1179,a) \;\) at \(\;a = \) e.g. 2